### Particle Acceleration by Magnetic Reconnection

### ElisaBete de Gouveia Dal Pino

IAG – Universidade de São Paulo

Collaborators: L. Kadowaki, B. Khiali, C. Singh, M. V. del Valle, G. Kowal, A. Lazarian, H. Sol

MFU V, Corsica, October 5-9, 2015

## **CR acceleration: exciting challenges**

Standard processes – e.g. **1**<sup>st</sup> **Fermi in shocks:** difficulties to explain particle acceleration and very high energy emission (TeV) in very compact regions (variability) in:

- pulsars
- AGN cores
- BHBs (microquasars)
- GRB and AGN relativistic jets

magnetically dominated -> shocks weak

## This talk

# Particle acceleration by magnetic reconnection:

 powerful acceleration mechanism
can explain very high energy & neutrino emission

## COSMIC MAGNETIC RECONNECTION

#### Directly observed:



#### Solar corona

#### magnetotail

### Reconnection is FAST ! V<sub>rec</sub> ~ V<sub>A</sub>





Accretion disk coronae

> Stellar Xray Flares

Star Formation and ISM

Reconnection also beyond Solar System

Pulsars

AGN & GRB Jets

Accreting NS and SGRs



## Fast Magnetic Reconnection Models

• Petschek model (1964): X-point configuration



Unstable and collapse to (Sweet-Parker) slow reconnection (Biskamp'96): unless *collisionless* (L  $\sim \lambda_{e,mfp}$ ) *pair* plasma with localized  $\eta$  (e.g. Sturrock 1966; Birn+01, Yamada+10; Forbes+)

## Fast Magnetic Reconnection Models

### Petschek model (1964): X-point configuration





(2D PIC simulations: magnetic islands, e.g. Drake+ 2006; Cerutti+13, **Sironi's talk**)

Unstable and collapse to (Sweet-Parker) slow reconnection (Biskamp'96): unless *collisionless* (L  $\sim \lambda_{e,mfp}$ ) *pair* plasma with **localized**  $\eta$  (e.g. Sturrock 1966; Birn+01, Yamada+10; Forbes+)

## Fast Reconnection in collisional flows

### **TURBULENT RECONNECTION** (Lazarian & Vishniac 1999):



Reconnection layer : THICKER
THREE-DIMENSIONAL

Magnetic lines wandering: many simultaneous reconnection events

$$V_{\rm rec} = V_{\rm A} \left(\frac{l}{L}\right)^{1/2} \left(\frac{v_l}{V_{\rm A}}\right)^2$$

Successfully tested in numerical simulations (Kowal et al. 2009, 2012)



(Alternative~descriptions: Drake+; Shibata & Tanuma01; Loureiro+07; Bhattacharjee+09)

## 1st-order FERMI ACCELERATION @ RECONNECTION SITE



### de Gouveia Dal Pino & Lazarian 2005

## 1st-order FERMI ACCELERATION BY RECONNECTION

1<sup>st</sup>-order Fermi (de Gouveia Dal Pino & Lazarian 2005)



Kowal et al. 2015



thanks Khiali

#### Kowal, de Gouveia Dal Pino & Lazarian, ApJ 2011

## **Probing Reconnection as powerful mechanism to accelerate particles**

To probe analytical results  $\rightarrow$  numerical simulations:

Most simulations of particle acceleration by magnetic reconnection: 2D collisionless plasmas (PIC) @ scales (e.g. Drake+; Zenitani & Hoshino; Cerutti, Uzdensky+; Sironi & Spitkovsky):

few plasma inertial length  $\sim 100 \text{ c}/\omega_{p}$ 

> Larger-scale astrophysical systems (BHBs, AGNs, GRBs):

→ MHD description → collisional reconnection (Kowal, de Gouveia Dal Pino & Lazarian 2011, 2012; de Gouveia Dal Pino+ 2014, 2015)

### **Particle Acceleration in 2D MHD Reconnection**



Kowal, de Gouveia Dal Pino, Lazarian 2011

2D Multiple current sheets to compare with PIC simulations (e.g. Drake+10)

particles confined  $\rightarrow$ 1<sup>st</sup> order Fermi:  $\Delta E/E \sim v_{rec}/v$ 



## Magnetic Reconnection Acceleration: successful numerical testing in 3D MHD





## N(E) ~ E<sup>-1-2</sup>

del Valle, de Gouveia Dal Pino, Kowal 2015

## Magnetic Reconnection Acceleration: successful numerical testing in 3D MHD



 $acc^{-1} \sim E^{-0.4-0.3}$ 

del Valle, de Gouveia Dal Pino, Kowal 2015



### Particle Acceleration in 3D MHD Pure Turbulence



~1 5.21

2<sup>nd</sup> order

10<sup>0</sup>

Fermi

10

102

10

100

10-2

 $10^{2}$ 

100

2 10<sup>2</sup>

~ 2.54

101

Time [t<sub>Allven</sub>]

~1 0.68

10<sup>2</sup>

104

10

Perseus cluster

scattering by approaching and receding magnetic irregularities

Kowal, de Gouveia Dal Pino, Lazarian, PRL 2012

olized Kinetic Energy [mp]

10<sup>2</sup>

100

10<sup>-4</sup>

## Reconnection acceleration beyond the SS

- Zenitani & Hoshino (2001-2007)
- de Gouveia Dal Pino & Lazarian (2003, 2005)
- Dmitruk, Matthaeus+ (2003)
- de Gouveia Dal Pino et al. (2010)
- Giannios (2010, 2013)
- del Valle, Romero et al. (2011)
- Cerutti et al. (2013)
- de Gouveia Dal Pino, Kowal & Lazarian (2014)
- Cerutti, Werner, Uzdensky, Begelman (2014)
- Lyutikov (2014)
- Wu+ (2014)
- Dexter+ (2014)
- Werner+ (2014)
- Sironi & Spitkovsky (2014)
- Singh, de Gouveia Dal Pino, Kadowaki (2015)
- Kadowaki, de Gouveia Dal Pino, Singh (2015)
- Khiali, de Gouveia Dal Pino, del Valle (2015)
- Khiali, de Gouveia Dal Pino, Sol (2015)
- Khiali & de Gouveia Dal Pino (2015)
- del Valle, de Gouveia Dal Pino, Kowal (2015)
- de Gouveia Dal Pino & Kowal (2015)
- Uzdensky (2015)
- Guo et al (2015)
- Sironi, Petropoulou, Giannios (2015)....

## APPLICATION TO BHs and relativistic jets

## Black Holes: Ubiquitious in Astrophysics

### AGNs (blazars, radio-galaxies, seyferts)

-RAY BINARY SCHEMATIC

Black Hole Binaries (Microquasars)

> Radio Galaxy 3C31 = NGC 383 Copyright NRAO/AUI 2006

## Gamma-Ray emission common in Blazars

- BLAZARS: luminous AGNs
- Jet ~ along the line of sight:
- Emission dominated by relativistic jet
- shock acceleration





## ...But Non-Blazars

Also Gamma Ray emitters !

Rapid variability emission: 100 Rs



RADIO

OPTICAL

Where are particles accelerated?What are the acceleration mechanisms?

### Reconnection acceleration in the surrounds of BHs

### Accretion disk/jet systems (AGNs & galactic BHs)



de Gouveia Dal Pino & Lazarian 2005; de Gouveia Dal Pino+2010 21

### Reconnection acceleration in the surrounds of BHs

## **Revisited the model to evaluate reconnection power and acceleration -> apply to more than 200 sources:**

- Different accretion disk models (Shakura-Sunyaev; MDAF)
- Coronal model by Liu et al. (2002, 2003).
- Fast reconnection in the surrounds of the BH driven by turbulence



### Reconnection acceleration in the surrounds of BHs

### **Magnetic Power**

$$\dot{W}_B \simeq 1.66 \times 10^{35} \Gamma^{-\frac{1}{2}} r_X^{-\frac{5}{8}} I^{-\frac{1}{4}} I_X q^{-2} \dot{m}^{\frac{3}{4}} m \ erg/s$$



## Magnetic Reconnection Power around BHs



## Magnetic Reconnection Power around BHs



## Magnetic Reconnection around BHs works for different Accretion Disk Models



Soft -> Hard

M-ADAF accretion disk Hard -> Soft

## Applied the reconnection acceleration model to build the SEDs of

## Non-Blazars: CenA, M87, PerA, 3C110 BHBs: Cyg X1 and Cyg X3

## **Reconnection Acceleration & Radiative Losses**

✓ Cooling of the accelerated particles -> emission:

t<sub>acc</sub> ~ t<sub>loss</sub>(Synchrotron, SSC, pp, pγ)

### **Ex.: Radio-galaxy Cen A**



Khiali, de Gouveia Dal Pino, Sol 2015 (arXiv:1504.07592)

## **Reconnection Acceleration & Radiative Losses**

✓ Cooling of the accelerated particles -> emission:

t<sub>acc</sub> ~ t<sub>loss</sub>(Synchrotron, SSC, pp, pγ)

### Ex.: Radio-galaxy M87





#### **Spectral Energy Distribution**

#### Khiali, de Gouveia Dal Pino, Sol 2015 (arXiv:1504.07592)



✓ Cooling of the particles -> emission:

-6

t<sub>acc</sub> ~ t<sub>loss</sub>(Synchrotron, SSC, pp, pγ)

#### **Ex.: Galactic Black Hole Cyg X3**



17



#### **Spectral Energy Distribution**

#### Khiali, de Gouveia Dal Pino, del Valle, MNRAS 2015

## Neutrino emission from cores of low luminous AGNs due to reconnection acceleration



p + photons  $\rightarrow \pi$  + p

 $\pi^{\circ} \rightarrow \gamma \gamma$  $\pi^{\pm} \rightarrow \mu^{\pm} \nu$ 

IceCube flux of Neutrinos

Khiali & de Gouveia Dal Pino, MNRAS 2015 (arxiv.1506.01063v1)

## Reconnection driven by Kink in AGN & GRB Magnetically Dominated Relativistic Jets



Singh, Mizuno, de Gouveia Dal Pino (in prep.)

## Reconnection driven by Kink in AGN & GRB Magnetically Dominated Relativistic Jets





Also sites for magnetic reconnection particle acceleration and gammarays!

Singh, Mizuno, de Gouveia Dal Pino (in prep.)

## In situ 1<sup>st</sup>-order Fermi Relativistic MHD Reconnection x shock acceleration in Jets



 $10^{2}$ 

 $10^{2}$ 

10

10

## Summary

- ✓ Particles inserted in MHD current sheets with fast reconnection (e.g. driven by turbulence): exponential increase of energy in a 1<sup>st</sup> order Fermi acceleration (collisional ~ collisionless: N(E) ~ E<sup>-1-2</sup>)
- $\checkmark$  Particle acceleration in 3D MHD reconnection is more efficient than in 2D
- ✓ Acceleration rate  $t_{acc}^{-1} \sim E^{-0.4-0.3}$
- Acceleration by magnetic reconnection (numerically tested): can explain gamma-ray as coming from the *core* of BHBs and non-blazar AGNs
- ✓ The magnetic reconnection power matches well with the observed correlation of radio/gamma-ray luminosity versus BH mass for these sources over 10<sup>10</sup> orders of magnitude
- $\checkmark$  Reconnection acceleration in the core -> SEDs of non-blazars and BHBs
- Magnetic reconnection acceleration may be important in magnetically dominated relativistic jets (AGNs & GRBs) (see also Sironi's talk)

# **Extra Slides**

## CTA & Mini-Array will locate the real region of acceleration and help to unveil the physics in the core/jet launching

# Is location of Gamma Emission in LLAGNs really in the core ?



Cen A



Magnetic Reconnection Acceleration in the core? (Khiali, de Gouveia Dal Pino, Sol 2015)

OPTICAL

Shock Acceleration in the jet? (e.g. Reynoso, Medina, Romero 2011)







### **Reconnection Acceleration X Radiative Losses**



 γ-ray flux absorption by pair production as function of energy and height z above the plane of the accretion disk

#### **Ex.: Radio-galaxy Cen A**



z>1 Rs -> NO absorption

Khiali, de Gouveia Dal Pino, Sol 2015

### Particle Acceleration in 2D x 3D MHD Reconnection



### **Particle Acceleration Time in Fast Reconnection**

Particle acceleration time cannot be smaller than:

 $t_{acc,min} \sim t_g(\beta_{rec}) \sim E/e B c \beta_{rec}$ 



Del Valle, de Gouveia Dal Pino, Kowal 2014

Probing Particle Acceleration by Reconnection with Numerical MHD Simulations

• **Isothermal MHD equations solved:** second-order Godunov scheme and HLLD Riemann solver (Kowal et al. 2007, Kowal et al 2009)

 Test particles injected in the MHD domain of reconnection and their trajectories followed:

$$\frac{d}{dt}(\gamma m \boldsymbol{u}) = q\left[(\boldsymbol{u} - \boldsymbol{v}) \times \boldsymbol{B}\right]$$

Kowal, de Gouveia Dal Pino, Lazarian 2011; 2012