Magnetic Fields in the Periphery of Giant Molecular Clouds – Zeeman Effect Observations

\[\lambda 2.6 \text{ mm} \, ^{12}\text{CO}, J=1-0, \text{ Dame et al. (2001)} \]
Recent collaborators

- Richard Crutcher (University of Illinois)
- Edith Falgarone (ENS, Paris)
- Carl Heiles (Berkeley)
- Kristin Thompson (Ph.D., University of Kentucky)

With partial support from the US National Science Foundation
1. Background – $E_{\text{grav}}/E_{\text{mag}}$

- λ is the normalized M/Φ ratio, where

$$\lambda \approx (E_{\text{grav}}/E_{\text{mag}})^{\frac{1}{2}}$$

Note - λ is the same thing as McKee’s μ_ϕ
1. Background – $E_{\text{grav}}/E_{\text{mag}}$

- If $\lambda > 1$
 - Gravity dominant ($E_{\text{grav}} > E_{\text{mag}}$)
 - Cloud is magnetically “supercritical”
 - B alone cannot prevent collapse of cloud

- If $\lambda < 1$
 - Magnetic field dominant ($E_{\text{mag}} > E_{\text{grav}}$)
 - Cloud is magnetically “subcritical”
 - B alone will prevent collapse of cloud (as long as flux freezing is maintained)
1. Background – E_{grav}/E_{mag}

- The mass-to-flux ratio is an observable since

$$\frac{M}{\Phi} = \left(\frac{M}{\text{area}} \right) \propto \frac{N(H)}{B}$$

- Converted to observing units

$$\lambda \approx 5 \times 10^{-21} \frac{N(H)}{B_{\mu G}}$$
2. Measuring B via Zeeman Effect

- Only known method to measure strength of B in localized regions of ISM.

- Involves measurement of very weak circular polarization in radio frequency spectral lines.

- Reveals line-of-sight component B_{los} only (with rare exceptions).

- Only practical for spectral lines from species with electronic angular momentum (e.g. HI, OH, CN).
2. Measuring B via Zeeman Effect

- The three Zeeman species sample different densities

<table>
<thead>
<tr>
<th>Species</th>
<th>Wavelength</th>
<th>n(H) sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI</td>
<td>21 cm</td>
<td>$10^1 - 10^2$ cm$^{-3}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(diffuse gas)</td>
</tr>
<tr>
<td>OH</td>
<td>18 cm</td>
<td>$10^3 - 10^4$ cm$^{-3}$</td>
</tr>
<tr>
<td>CN</td>
<td>2.6 mm ($N=1-0$)</td>
<td>$10^5 - 10^7$ cm$^{-3}$</td>
</tr>
<tr>
<td></td>
<td>1.3 mm ($N=2-1$)</td>
<td></td>
</tr>
</tbody>
</table>
2. Measuring B via Zeeman Effect

- Published Zeeman data comprise 161 measurements of B_{los}

<table>
<thead>
<tr>
<th>Data set</th>
<th>Reference</th>
<th>No. of B_{los}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compilation (HI, OH, CN as of 1999)</td>
<td>Crutcher 1999</td>
<td>27</td>
</tr>
<tr>
<td>OH absorption</td>
<td>Bourke, Myers, Robinson & Hyland 2001</td>
<td>22</td>
</tr>
<tr>
<td>Arecibo HI absorption Millennium Survey</td>
<td>Heiles & Troland 2004, 2005</td>
<td>67</td>
</tr>
<tr>
<td>Arecibo OH emission (dark clouds)</td>
<td>Troland & Crutcher 2008</td>
<td>34</td>
</tr>
<tr>
<td>IRAM 30m CN, 1-0 emission</td>
<td>Falgarone, Troland, Crutcher & Paubert 2008</td>
<td>11</td>
</tr>
</tbody>
</table>
3. Zeeman Effect in Molecular Cloud Peripheries

- Thompson, Troland & Heiles* used Arecibo to study Zeeman effect in galactic OH absorption lines (1665 & 1667 MHz) toward extra-galactic continuum sources.

- Sources chosen to lie behind galactic molecular clouds.

*to be submitted fall, 2015
3. Zeeman Effect in Molecular Cloud Peripheries

- Lines-of-sight from background continuum sources do not sample molecular cores preferentially.
3. Zeeman Effect in Molecular Cloud Peripheries

Observed 38 velocity components against 21 sources
4. Zeeman Effect – All Data

Red dots are for molecular cloud peripheries

See Crutcher, ARAA, 2012
4. Zeeman Effect – All Data
4. Zeeman Effect – All Data

\[B_{\text{los}} (\mu G) \]

\[N_H (\text{cm}^{-2}) \]

\[\lambda < 1 \text{ subcritical } \]
\[B \text{-dominated} \]

\[\lambda > 1 \text{ supercritical } \]
\[\text{gravity-dominated} \]

\[\lambda \approx 5 \]

\[\lambda = 1 \]
4. Zeeman Effect – All Data

Molecular cloud peripheries

Cold Neutral Material (CNM)

$\lambda < 1$ \textit{subcritical}

$\lambda > 1$ \textit{supercritical}

Molecular cores
5. Zeeman Effect Results

A. For $N(\text{H}) < 10^{21} \text{ cm}^{-2}$
 $\lambda < 1$ (i.e. diffuse H^0 gas is magnetically subcritical)
5. Zeeman Effect Results

B. For \(N(H) \approx 10^{21} \) to \(10^{22} \) cm\(^{-2} \)

\(- \lambda \approx 1 \) in molecular cloud peripheries (red dots)
5. Zeeman Effect Results

C. For $N(\text{H}) < 10^{22} \, \text{cm}^{-2}$

- B constant with increasing $N(\text{H})$ - from diffuse H0 gas through molecular cloud peripheries

- λ increases with $N(\text{H})$
5. Zeeman Effect Results

D. For $N(H) > 10^{22}$ cm$^{-2}$

- B increases with $N(H)$ - λ becomes constant ≈ 2-4 (i.e. molecular cores are mildly supercritical)
6. Toward a critical $N(\text{H}) \approx 10^{22}$ cm$^{-2}$

- $N(\text{H}) \approx 10^{22}$ cm$^{-2}$ appears to be a critical value, above which the role of the magnetic field changes.

- As previously noted, B rises with $N(\text{H})$ for $N(\text{H}) > 10^{22}$ cm$^{-2}$
6. Toward a critical $N(\text{H}) \approx 10^{22} \text{ cm}^{-2}$

- Cloud alignment changes from parallel to perpendicular to B for $N(\text{H}) > 5 \times 10^{21} \text{ cm}^{-3}$

Taurus Molecular Cloud - Planck Collaboration XXXV (J. Soler)
6. Toward a critical $N(H) \approx 10^{22} \text{ cm}^{-2}$

- Fractional polarization $p\%$ declines sharply for $N(H) > 2 \times 10^{22} \text{ cm}^{-2}$

Planck Collaboration
XIX (J-P Bernard)
6. Toward a critical \(N(H) \approx 10^{22} \text{ cm}^{-2} \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Trend</th>
<th>If (N(H) >) (cm(^{-2}))</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B)</td>
<td>Increases</td>
<td>few (\times 10^{22})</td>
<td>Zeeman results</td>
</tr>
<tr>
<td>(p %)</td>
<td>Decreases sharply</td>
<td>(2 \times 10^{22})</td>
<td>Planck XIX (J-P Bernard)</td>
</tr>
<tr>
<td>Cloud alignment</td>
<td>Changes from \textit{parallel} to \textit{perpendicular} to B</td>
<td>(0.5 \times 10^{22})</td>
<td>Planck XXXV (J. Soler)</td>
</tr>
</tbody>
</table>
6. Toward a Critical $N(H) \approx 10^{22} \text{ cm}^{-2}$

- Crutcher et al. (2010) analyzed Zeeman data as a function of volume density $n(H)$.

- They find B rises with $n(H)$ for $n(H)_{\text{crit}} > 300 \text{ cm}^{-3}$.

- If $N(H)_{\text{crit}} \approx 10^{22} \text{ cm}^{-2}$, then a critical magnetic scale length $\approx N(H)_{\text{crit}}/n(H)_{\text{crit}} \approx 10 \text{ pc}$ (sub-GMC size).

- 10 pc is close to Jeans length for a gas with $n(H) \approx 300 \text{ cm}^{-3}$ and $T = 50 \text{ K}$.
6. Toward a Critical $N(\text{H}) \approx 10^{22} \text{ cm}^{-2}$

- Onset of gravitational instability occurs when total galactic mid-plane pressure P_o equals the gravitational pressure P_G (the mean weight of material in a cloud)1.

- $P_o \approx 4 \times 10^{-12} \text{ dyn cm}^{-2}$ (Boulares & Cox, 1990), $P_G \approx (3\pi/20) \times G \Sigma^2$ (Williams, Blitz & McKee, 1999).

- So $N(\text{H}) \approx 5 \times 10^{21} \text{ cm}^{-2}$

1C. McKee, lunchtime communication (something I learned at this conference!)
7. Conclusions

◆ The role of the magnetic field in cloud evolution changes once self gravitation becomes important.
 – Size scale $\approx 5 - 10$ pc (sub-GMC scale)
 – $n(H)$ \approx few times 100 cm$^{-3}$
 – So $N(H)$ $\approx 10^{22}$ cm$^{-2}$

◆ As this point is reached
 – B rises with $N(H)$ and $n(H)$, λ reaches 2-4 (supercritical)
 – B orientation changes from parallel to perpendicular to filament axes
 – *Per cent* linear polarization $p\%$ declines dramatically