Magnetic Fields in the Periphery of Giant Molecular Clouds – Zeeman Effect Observations

 λ 2.6 mm ¹²CO, J=1-0, Dame et al. (2001)

Recent collaborators

- Richard Crutcher (University of Illinois)
- Edith Falgarone (ENS, Paris)
- Carl Heiles (Berkeley)

Kristin Thompson (Ph.D., University of Kentucky)

With partial support from the US National Science Foundation

1. Background – $E_{\text{grav}}/E_{\text{mag}}$

• λ is the normalized *M*/ Φ ratio, where

$$\lambda \approx (E_{grav}/E_{mag})^{\frac{1}{2}}$$

Note - λ is the same thing as McKee's μ_{ϕ}

1. Background $-E_{\text{grav}}/E_{\text{mag}}$

• If $\lambda > 1$

- Gravity dominant ($E_{grav} > E_{mag}$)
- Cloud is magnetically "supercritical"
- B alone cannot prevent collapse of cloud

• If $\lambda < 1$

- Magnetic field dominant ($E_{mag} > E_{grav}$)
- Cloud is magnetically "subcritical"
- B alone will prevent collapse of cloud (as long as flux freezing is maintained)

1. Background –
$$E_{\text{grav}}/E_{\text{mag}}$$

The mass-to-flux ratio is an *observable* since

$$\frac{M}{\Phi} = \frac{\left(\frac{M}{area}\right)}{\left(\frac{\Phi}{area}\right)} \propto \frac{N(H)}{B}$$

Converted to observing units

$$\lambda \approx 5 \times 10^{-21} \frac{N(H)}{B_{\mu G}}$$

2. Measuring B via Zeeman Effect

- Only known method to measure strength of B in localized regions of ISM.
- Involves measurement of very weak circular polarization in radio frequency spectral lines.
- Reveals *line-of-sight* component *B*_{los} *only* (with rare exceptions).
- Only practical for spectral lines from species with *electronic angular momentum* (e.g. HI, OH, CN).

2. Measuring *B* via Zeeman Effect

The three Zeeman species sample different densities

Species	Wavelength	<i>n</i> (H) sampled
HI	21 cm	10¹ – 10² cm⁻³ (diffuse gas)
OH	18 cm	$10^3 - 10^4 \text{ cm}^{-3}$
CN	2.6 mm (N=1-0) 1.3 mm (N=2-1)	$10^5 - 10^7 \text{ cm}^{-3}$

2. Measuring *B* via Zeeman Effect

• Published Zeeman data comprise 161 measurements of B_{los}

Data set	Reference	No. of B_{los}
Compilation (HI, OH, CN as of 1999)	Crutcher 1999	27
OH absorption	Bourke, Myers, Robinson & Hyland 2001	22
Arecibo HI absorption Millennium Survey	Heiles & Troland 2004, 2005	67
Arecibo OH emission (dark clouds)	Troland & Crutcher 2008	34
IRAM 30m CN, 1-0 emission	Falgarone, Troland, Crutcher & Paubert 2008	11

3. Zeeman Effect in Molecular Cloud Peripheries

- Thompson, Troland & Heiles* used Arecibo to study Zeeman effect in galactic OH absorption lines (1665 & 1667 MHz) toward extra-galactic continuum sources.
- Sources chosen to lie behind galactic molecular clouds.

*to be submitted fall, 2015

3. Zeeman Effect in Molecular Cloud Peripheries

 Lines-of-sight from background continuum sources do *not* sample molecular cores preferentially.

00

်၀၀

3. Zeeman Effect in Molecular Cloud Peripheries

A. For $N(H) < 10^{21} \text{ cm}^{-2}$

 $-\lambda < 1$ (i.e. diffuse H⁰ gas is magnetically *subcritical*)

B. For $N(H) \approx 10^{21}$ to 10^{22} cm⁻²

 $-\lambda \approx 1$ in molecular cloud peripheries (red dots)

C. For $N(H) < 10^{22} \text{ cm}^{-2}$

 B constant with increasing N(H) - from diffuse H⁰ gas through molecular cloud peripheries

D. For $N(H) > 10^{22} \text{ cm}^{-2}$

- *B* increases with N(H) - λ becomes constant \approx 2-4 (i.e. molecular cores are mildly *supercritical*)

6. Toward a critical $N(H) \approx 10^{22}$ cm⁻²

N(H) ≈ 10²² cm⁻² appears to be a critical value, above which the role of the magnetic field changes.

- As previously noted, B rises with N(H) for $N(H) > 10^{22}$ cm⁻²

6. Toward a critical $N(H) \approx 10^{22}$ cm⁻²

 Cloud alignment changes from *parallel* to *perpendicular* to *B* for N(H) > 5×10²¹ cm⁻³

*Taurus Molecular Cl*oud -Planck Collaboration XXXV (J. Soler)

6. Toward a critical $N(H) \approx 10^{22} \text{ cm}^{-2}$

6. Toward a critical $N(H) \approx 10^{22} \text{ cm}^{-2}$

Parameter	Trend	If N(H) > (cm ⁻²)	Reference
B	Increases	few × 10 ²²	Zeeman results
<i>p</i> %	Decreases sharply	2 × 10 ²²	Planck XIX (J-P Bernard)
Cloud alignment	Changes from <i>parallel</i> to <i>perpendicular</i> to B	0.5×10^{22}	Planck XXXV (J. Soler)

6. Toward a Critical N(H) ≈ 10²² cm⁻²

- Crutcher et al. (2010) analyzed Zeeman data as a function of *volume* density *n*(H).
- They find *B* rises with n(H) for $n(H)_{crit} > 300$ cm⁻³.
- If N(H)_{crit} ≈ 10²² cm⁻², then a *critical magnetic scale* length ≈ N(H)_{crit}/n(H)_{crit} ≈ 10 pc (sub-GMC size)

◆ 10 pc is close to Jeans length for a gas with $n(H) \approx 300 \text{ cm}^{-3} \text{ and } T = 50 \text{ K}.$

6. Toward a Critical N(H) $\approx 10^{22}$ cm⁻²

- Onset of gravitational instability occurs when total galactic mid-plane pressure P₀ equals the gravitational pressure P_G (the mean weight of material in a cloud)¹.
- $P_0 \approx 4 \times 10^{-12}$ dyn cm⁻² (Boulares & Cox, 1990), $P_G \approx (3\pi/20) \times G \Sigma^2$ (Williams, Blitz & McKee, 1999).
- So $N(\mathbf{H}) \approx 5 \times 10^{21} \, \mathrm{cm}^{-2}$

¹C. McKee, lunchtime communication (something I learned at this conference!)

7. Conclusions

The role of the magnetic field in cloud evolution changes once self gravitation becomes important.

- -Size scale \approx 5 -10 pc (sub-GMC scale)
- $-n(H) \approx \text{few times 100 cm}^{-3}$
- $-So N(H) \approx 10^{22} cm^{-2}$

As this point is reached

- -B rises with N(H) and n(H), λ reaches 2-4 (supercritical)
- B orientation changes from parallel to perpendicular to filament axes
- Per cent linear polarization p% declines dramatically