Grain Alignment by Radiative Torques: Theory, Modeling and Observations

Thiem Hoang CITA Fellow, University of Toronto

Special thanks to: A. Lazarian, B-G Andersson, J. Cho, T. Jones, P. G. Martin, G. Novak

Corsia, Oct 5-9, 2015

Outline

Introduction

Review of RAT alignment:

♦ Analytical Model of Radiative Torques (RATs)

♦ Basic/Testable Properties of RAT Alignment

Modeling vs. Observations:

♦ Modeling of dust polarization using RAT alignment

♦ Comparison with observational data

How to bring RAT alignment further?

♦ Grain alignment in extragalactic ISM using SN polarimetry
 ♦ Unified theory of RAT alignment, SRAT?

Summary

Dust polarization is crucially important for CMB Bmode detection

Dust polarization allows tracing magnetic field and testing star formation theory

Dust grains aligned with B-field polarize starlight and emit polarized thermal emission

How does dust grain interact with the magnetic field?

Magnetization by spinning (Barnett effect)

Theory of Grain Alignment

1949: Spitzer & Turkey: Ferromagnetic alignment (first proposed alignment of magnetic needles in interstellar magnetic field) 1951: Davis & Greenstein: Paramagnetic Relaxation Alignment 1951: T. Gold: Mechanic Alignment 1976: Dolginov & Mitrophanov: Helicity and Radiative Torques (RATs) 1979: E. Purcell: Pinwheel torques + paramagnetic relaxation 1986: J Mathis: Superparamagnetic inclusion of iron clusters 1997: Lazarian & Draine: thermal flipping and trapping 1996-2003: Draine & Weingartner: pioneering study of RATs and RAT alignment for three grain shapes

2007-ongoing: Analytical and Predictive Model of RAT Alignment

Internal and External Grain Alignment

Stage 1: ω align with J, a

Stage 2: J gets aligned with B

Radiative Torque (RAT) Alignment Mechanism

 Dolginov & Mytrophanov 76: computed radiative torques for two twisted ellipsoids

 B Draine (1996) introduced radiative torques in discrete dipole (DDSCAT) code

Predictive Model of RAT Alignment

Analytical model (AMO) of Radiative Torques

 \bullet Simple analytical expressions available for Q_{ei} torques

• Allow us to infer **basic properties** of grain alignment

Generic Properties of RATs: Q_{e1} symmetry and Q_{e2} anti-symmetry with flipping

- Zero points: Q_{e2} = 0 at Θ =0 or 180 degree.
- Q^{max} -ratio= $Q_{e1}^{max}/Q_{e2}^{max}$ from DDSCAT changes with grain shape, size, and λ .
- RATs from arbitrary shape can be described by functional forms from AMO with varying Q^{max}-ratio.

Basic Properties of RAT alignment: Method

• Follow evolution of grain momentum in spherical system (J, ξ) subject to RATs and drag: $\frac{d\vec{J}}{dt} = \text{RATs} - \text{drag} = H\frac{\vec{J}}{J} + F\vec{\zeta} - \frac{\vec{J}}{\tau_{\text{drag}}}$

1. Grains are aligned with low-J and high-J attractors

Grains at high-J attractors are perfectly aligned, those at low-J attractors are partially aligned.
AMO predicts the "right" alignment with long axes perpendicular to B.

Hoang & Lazarian 08

2. Maximum angular momentum decreases with the angle between radiation direction and B-field.

 The angle-dependence alignment was observationally confirmed by Andersson et al. 2011, Vaillancourt+Andersson 2015 Hoang & Lazarian 09a

3. Maximum angular momentum increases with grain size.

Large grains are aligned more efficiently than small grains.
Grains near cloud surface aligned better than those deep inside cloud.

4. Presence of high-J attractor depends on Ψ and *Q^{max}-ratio*RAT only impede grain rotation

• Fraction of grains aligned with high-J attractor depends on Q^{max} -ratio and radiation direction ψ .

Lazarian & Hoang 07a

Ab Initio Modeling of Dust Polarization

Polarized Emission from Molecular Cloud

SN polarimetry: polarization rises to UV wavelengths for some SNe la

Polarization data for SNe 2008fp and 2014J

Hoang 2015, arXiv:1510.01822

Small grains may be efficiently aligned by RAT due to radiation from SN itself

Dusty cloud within d~ 20pc from explosion site can help, no need of circumstellar dust

Hoang 2015, arXiv:1510.01822

Summary and Discussion

- RAT alignment is a principal mechanism, but paramagnetic relaxation is needed for small grains.
- RAT theory allows for "ab initio" modeling of dust polarization spectra from optical to far-IR/mm wavelengths.
- Predictions from theory are supported by observational data from various media: molecular clouds, nebulae.
- RAT alignment can explain anomalous polarization for SN 2008fp, without the need of CS dust, putting constraint on progenitors of SNe Ia.
- High-J attractor is not universal, how to get high polarization in ISM as seen by Planck?

Thank you very much!

 Rotating magnetization by B_{perp} induces energy dissipation, decreasing the angle between J and B.

ISM

$$\tau_{\rm DG} \approx 1.2 \times 10^6 \left(\frac{B}{5\,\mu\rm{G}}\right)^{-2} \left(\frac{a}{0.1\,\mu\rm{m}}\right)^2 \left(\frac{K(\omega)}{1.2 \times 10^{-13}\,\rm{s}}\right)^{-1} \rm{yr} \quad \tau_{\rm drag} \approx 6.3 \times 10^4 \left(\frac{a}{0.1\,\mu\rm{m}}\right) \left(\frac{1}{1+\rm{F}_{\rm IR}}\right) \rm{yr}$$

 $\frac{\tau_{\rm DG}}{\tau_{\rm drag}} \approx 20 \left(\frac{a}{0.1 \mu \rm m} \right) (1 + F_{\rm IR}) \quad \tau_{\rm DG} < \tau_{\rm drag} \text{ for a < 0.1 } \mu \rm m \ grains.$ • Small grains can be aligned, big grains not

Results from Inversion Problem: Observations reveal big grains are efficiently aligned whereas small grains are weakly aligned.

Polarized Emission from Molecular Cloud

Basic Properties of RAT alignment (continued)

- 2. RAT alignment decreases toward the center of molecular cloud (observation: Whittet+ 2008, Jones+15, Planck)
- 3. RAT alignment depends on the direction to the radiation source (observation: Andersson et al. 2009, 2010)
- 4. RAT alignment of superparamagnetic material is perfect
- 5. RAT alignment is enhanced by pinwheel torques from H2 formation (observation: Andersson et al. 2013)
- 6. RAT alignment sometimes is increased by random gas collisions

A particular star: HD 1977770 Alignment of PAHs and UV Polarization Bump

PAHs produce 2175 Å features (Draine 89, Draine & Li 2007)
PAHs radiate spinning dust emission (Hoang et al. 2010, 2011)
How efficient are PAHs aligned observationally?

Alignment of PAHs and Microwave Polarization

Remaining issues of RAT alignment:

High-J attractors are not universal (shape, radiation, angle).
 Why are there universal high alignment (high-J) of big grains?

• Alignment of carbon grains with helicity?

RAT alignment cannot explain smooth increase of R with a?

Polarized emission from protoplanetary disks

Low polarization, consistent with observations (Hughes + 2013)

7. New effect: collisional pumping

• New effect: random collisions can increase the degree of RAT alignment when high-J attractor point exists.

Hoang & Lazarian 08

