The role of the magnetic field in the formation of structure in molecular clouds

Juan Diego Soler

Magnetic Fields in the Universe V. October 5-9, 2015

Optical and near-infrared polarization Chapman et al., ApJ, 2011

Planck intermediate results. XXXV

Dust polarized emission and the magnetic field

Planck 2015 results. I. Overview of products and results

Magnetic field and polarization statistics

353 GHz Polarization angle

- Angle dispersion Planck intermediate results. XIX
- Polarized fraction Planck intermediate results. XX
- Power spectrum Planck intermediate results. XXX
- Geometric modelling Planck intermediate results. XXXIII Planck intermediate results. XXXIV
- Relative orientation
 Planck intermediate results. XXXII
 Planck intermediate results. XXXV
- Relation to E- and B-modes Planck intermediate results. XXXVIII

http://planckandthemagneticfield.info

353 GHz Polarized flux

Observations

Relative orientation

Simulations

- Magnetic field
- Turbulence
- Gravity

Relative Orientations

$$\nabla n = \left(\frac{\partial n}{\partial x}\right)^{(l)} \hat{x} + \left(\frac{\partial n}{\partial y}\right)^{(l)} \hat{y} + \left(\frac{\partial n}{\partial z}\right)^{(l)} \hat{z}$$

$$\left(\frac{\partial n}{\partial x}\right)^{(l)} = n(x, y) \star K^{(\partial/\partial x)}$$

Soler et al, 2013

$$\phi = \arctan\left(\frac{|\mathbf{B} \times \nabla n|}{\mathbf{B} \cdot \nabla n}\right)$$

Histogram of Relative Orientations

Relative Orientations

Taurus region

- N_H from dust optical depth
- \mathbf{B}_{\perp} from Planck 353 GHz pol.

-- 10' FWHM (0.4 pc @ d=140 pc)

16 deg (40 pc @ d=140 pc)

Planck intermediate results. XXXV

Histogram of Relative Orientations

Relative Orientations

Relative Orientations

Juan D. Soler (CEA/Saclay). MFUV. Oct. 2015

Planck intermediate results. XXXV

Magnetic fields in molecular cloud formation

What have we learned?

- Magnetic field at least in equipartition with turbulence.
- Magnetic field comparable to gravity?

Planck intermediate results. XXXV

Magnetic fields and cloud formation

Open questions

- Line of sight integration
- Dust grain alignment
- Field structure at smaller scales

Gandilo, N. and BLASTPol collaboration, 2015 in preparation Shariff, J. and BLASTPol collaboration, 2015 in preparation Soler, J.D. and BLASTPol collaboration, 2016 in preparation

Check out poster by Laura Fissel

BLAST-TNG

Balloon -borne 250 µm (22" res.) 350 µm 500 µm polarimetry.

1000 MKID detectors.

Flying from Antarctica in 2017

~16x increase in mapping speed ~6x increase in resolution ~3x longer obs. time

b [deg] 1.3

0.8

266.8

CARDIFF

LPSC IAS

ANR

IPAG

bservatoire

iram ,

264.5

IRAM 30m telescope 1.2 mm (10" res.) polarimetry. 6.5' FoV

@irap 🚟 📥 📟

CONSTANS

201

-ES

2x2000 MKID detectors

וכו UNIVERSITY Juan D. Soler (CEA/Saclay). MFUV. Oct. 2015

266.2

265.6

l [deg]

265.1

Challenging observations call for challenging simulations

Hennebelle & Iffrig, 2014, 2015

Conclusions

5

@*Planck* polarization observations provide an unprecedented data set for the study of the magnetic field in molecular clouds #PlanckRocks

In 10 nearby MCs, high-N_H structures mostly perpendicular to the field. May have formed by #ConvergingFlows or #GravitationalCollapse along the field. #MagneticFieldMatters

5

#InDustWeTrust, but we have to improve our understanding of #DustGrainAlignment, combine #MultipleScales, and contrast the observations with #MHDSims

Visit http://planckandthemagneticfield.info

Planck intermediate results. XXXV Corresponding author: Juan D. Soler (IAS, France) arXiv:1502.04123 A&A accepted