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Non-thermal emission from blazars

Blazars: jets from Active Galactic Nuclel pointing along our line of sight
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e broadband spectrum, from radio to
y-rays (and even TeV energies)

e [ow-energy synchrotron +
high-energy inverse Compton (IC)
from non-thermal particles

* high degree of radio and optical
polarization — magnetic fields



Powerful emission and hard TeV spectra
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Blazar phenomenology: o

(1) blazars are efficient emitters (radiated
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power ~ 10% of jet power) 7
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(2) rough energy equipartition between S o
emitting particles and magnetic field &
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(3) extended power-law distributions of the

emitting particles, with hard slope 1O
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The PIC method

Move particles under
Lorentz force

EM fields
_~ onthe grid
-'/’
o
Interpolate EM fields on 5 - *la - Deposit current from
the grid to the particles in '. 2 - _ particle motion in the
the cells o .. $ o st !ﬁ'giius cells onto the grid
X <

Spatial Domain

Solve for EM fields on the
grid

e No approximations, full plasma physics of ions and electrons

4ne?
Tiny length-scales (c/wp) and time-scales (wp™?) need to be resolved: w, = {/ ———

m
=» huge simulations, limited time coverage

 Relativistic 3D e.m. PIC code TRISTAN-MP (Buneman 93, Spitkovsky 05, LS+ 13,14)




Internal dissipation in blazar jets
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Internal Dissipation:

Shocks or Reconnection? ML



Shocks: no turbulence — no acceleration
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No “returning” particles — No self-generated turbulence Spitkovsky 09,11)

No self-generated turbulence — No particle acceleration

Strongly magnetized (o>10-3) quasi-perp Yo>1 shocks are poor particle accelerators:

Bo o Is large — particles slide along field lines

0 is large — particles cannot outrun the shock

6 11 = 1
unless v>c (“superluminal” shock)

— Fermi acceleration is generally suppressed



Are relativistic shocks always inefficient?

s N
) ﬁ
_ B
= 2
47—‘-/}/0 nom P C
~ S
GAMMA RAYS
BLOBS COLLIDE
SLOWER (internal shock
FASTER BLOB wave)
BLOB

Gy &
| Internal shocks

PREBURST

(Gehrels et al 02)

GAMMA-RAY EMISSION

external

X-RAYS,
VISIBLE
LIGHT,

JETCOLLIDESWITH RADIO
AMBIENT MEDIUM WAVES
(external shock wave)

s
—

shocks

AFTERGLOW

Internal shocks in blazars
and gamma-ray burst jets:

e yo~a few
e quasi-perpendicular shocks
e 0~0.01-0.1

Gamma-ray burst external
shocks:

e yo~a few hundreds
e perpendicular shocks

e 0~10-°

Bo~0
t1




High-o vs low-0 shocks

e High-o shocks: no returning particles — no turbulence
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Low-g shocks are filamentary (YN

Mediated by the filamentation (Weibel) instability, which
generates small-scale sub-equipartition magnetic fields.
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The Fermi process in low-g shocks
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Particle acceleration via the Fermi process in self-generated turbulence,
for initially unmagnetized (i.e., 0=0) or weakly magnetized flows.
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Low-0 shocks are efficient but slow 4t

The nonthermal tail has slope p=2.4+0.1 and contains ~1% of particles and ~10% of energy.
By scattering off small-scale Welbel turbulence, the maximum energy grows as ymaxoctl/z.

Instead, most models of particle acceleration in shocks assume Ymax*t (Bohm scaling).
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(LS et al. 13, Martins et al. 09,
Haugbolle 10) Conclusions are the same in 2D and 3D



Relativistic reconnection within jets
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Refs: Bessho, Bhattacharjee, Cerutti, Drake, Egedal, Giannios, de Gouveia dal Pino, Hesse, Hoshino, Huang,
Jaroschek, Kagan, Karimabadi, Kulsrud, Liu, Li, Lyubarsky, Lyutikov, Oka, Takamoto, Uzdensky, Yin, Zenitani



Dynamics and particle spectrum



Hierarchical reconnection
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e Reconnection is a hierarchical process of island formation and merging.

e The field energy is transferred to the particles at the X-points, in between the magnetic islands.



Hierarchical reconnection
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e The current sheet breaks into a series of secondary islands (e.g., Loureiro+ 07, Bhattacharjee+ 09,
Uzdensky+ 10, Huang & Bhattacharjee 12, Takamoto 13).
e The field energy is transferred to the particles at the X-points, in between the magnetic islands.

e | ocalized regions exist at the X-points where E>B.



Inflows and outflows

0=10 electron-positron

2D o0=10 with no guide field w,t=45
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e Inflow into the X-line is non-relativistic, at vin ~ 0.1 ¢ (Lyutikov & Uzdensky 03, Lyubarsky 05)
o

1+ o0

e Qutflow from the X-points is ultra-relativistic, reaching the Alfven speed va = C \/



The particle energy spectrum N
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-------------- | law dn/dyoy-P of slope p~2.

e The normalization increases, as more
and more particles enter the current
sheet.

 The mean particle energy in the current
10000 sheet reaches ~o/4

— rough energy equipartition

e The max energy grows as Ymaxt

(compare to Ymaxtl/? in shocks).

(LS &
Spitkovsky 14)



3D 0=10 reconnection with no quide field

(LS & Spitkovsky 14)
e In 3D, the in-plane tearing mode and the out-of-plane drift-kink mode coexist.
e The drift-kink mode is the fastest to grow, but the physics at late times is governed by the
tearing mode, as in 2D.




3D: particle spectrum
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e At late times, the particle
spectrum approaches a power-
law tail of slope p~2, extending in
time to higher and higher
energies. The same as in 2D.

e The maximum energy grows as
Ymaxt (compare to Ymaxtl/? in

shocks). The reconnection rate is
v,./c~ 0.02 in 3D (compare to v, /c
~0.11n 2D).



Particle acceleration mechanism



The highest energy particles

=10 &, t=720
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Two acceleration phases: (1) at the X-point; (2) in between merging islands



(2) Fermi process in between islands
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e |sland merging is essential
to shift up the spectral cutoff
energy.

* In the Fermi process, the
rich get richer. But how do
they get rich in the first
place?

[ FEAt Y | l A I | l | O PR | l | WO S |




(1) Acceleration at X-points
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(LS & Spitkovsky 14)
* |n cold plasmas, the particles are tied to field lines and they go through X-points.

e The particles are accelerated by the reconnection electric field at the X-points, and then
advected into the nearest magnetic island.

e The energy gain can vary, depending on where the particles interact with the sheet.



Implications for blazar emission



(1) Relativistic reconnection is efficient
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Blazar phenomenology: Relativistic reconnection:

* blazars are efficient emitters Y it transfers up to ~ 50% of flow energy
(radiated power ~ 10% of jet power) (electron-positron plasmas) or up to ~ 25%
(electron-proton) to the emitting particles




(2) Equipartition of particles and fields
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Blazar phenomenology: Relativistic reconnection:
e rough energy equipartition between ¥ in the magnetic islands, it naturally
emitting particles and magnetic field results in rough energy equipartition

between particles and magnetic field



(3) Extended non-thermal distributions
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(LS & Spitkovsky 14, confirmed by Guo et al. 14, Werner et al. 14)
Blazar phenomenology: Relativistic reconnection:
e extended power-law distributions of the ¥ it produces extended non-thermal tails
emitting particles, with hard slope of accelergted particles, whose power-
an law slope is harder than p=2 for high
- magnetizations (0>10
x~y P p<2 g (6>10)



Summary

High-energy emission from relativistic jets:

000° e Internal shocks in blazars and GRB jets: Since they are significantly
~ magnetized (0>10-3) and quasi-perpendicular, they are poor particle

accelerators.

Bo~0 » External shocks in GRBs: Weakly magnetized (0<10-3) shocks can
1 1 be efficient particle accelerators (~1% by number, ~10% by energy).

The maximum energy grows slowly, as ymaxxt/2.

Bo ° Magnetic reconnection in magnetically-dominated flows (o>1)
Y l satisfies all the basic conditions for the emission: it is fast and efficient,
can produce non-thermal populations with a power-law slope p~1+2,

and results in rough energy equipartition between particles and fields.



