Cosmic Rays in Random Magnetic Field

Amit Seta, Paul Bushby, Anvar Shukurov
Newcastle University, UK

5th Oct 2015

Magnetic Field in the Universe V IESC, Corsica, France

Pitch Angle Scattering of Cosmic Rays (CR)

Problem: CR propagation is usually analyzed in idealized random magnetic fields (synthetic turbulence)
Aim: Derive cosmic ray diffusion tensor in realistic magnetic fields (dynamo, intermittency, shock compression...)

Pitch Angle Scattering:

$$
\begin{aligned}
& \mu=\cos (\theta)=\vec{p} \cdot \vec{B} /|\vec{p}||\vec{B}| \\
& s=\omega_{L} t
\end{aligned}
$$

$\Delta p_{z}=e \int\left(\frac{\vec{v} \times \vec{B}}{c}\right)_{z} d z \Longrightarrow \delta \theta=-\pi\left(\frac{\delta}{B}\right) \cos \left(\phi^{\prime}\right) \Longrightarrow$ diffusion in \vec{x} space
This work: Compute CR diffusion tensor from trajectories in random magnetic fields.

- Track positions of 1024 particles
- $\delta B / B$ of the hot ISM (i.e. most efficient scattering)
- Pitch Angle Scattering: After every Larmor time, a random wave phase is chosen for each particle and then its momentum vector rotated by $\delta \theta$
- Calculated diffusion tensor, \| and \perp to the local magnetic field

Results for simple field configurations

Constant magnetic field:

ABC magnetic field:

Solving Induction equation (changing $R m$, structure changes):

Effect of:

- Intermittency?
- Levy flights ?

