Magnetic Fields in Protostellar Disks

 $\bullet \bullet \bullet$

Ramprasad Rao (ASIAA), Josep Miquel Girart (IEEC-CSIC), Zhi-Yun Li (Univ. Virginia)

Standard Paradigm of Magnetically Regulated Star Formation

Crutcher 06

Standard Paradigm of Magnetically Regulated Star Formation

Crutcher 06

Detection of Magnetic Fields in Star Forming Regions

Line of Sight component of B or B_parallel is usually observed via Zeeman Measurements (Talk by Dick Crutcher)

Plane of Sky component or B_perpendicular mainly via observation of polarization of spinning dust grains

CAVEAT!

Only Zeeman observations can provide B Field strengths. Polarized dust emission only gives us the direction!

Observations of Polarization from Dust

Observations of background starlight polarization in absorption \rightarrow independently mapped by Hall (1949) and Hiltner (1949)

Original explanation by Davis and Greenstein (1951) \rightarrow based on paramagnetic alignment of spinning dust grains

Current theories from the group of Lazarian $+ \rightarrow$ based on Radiative Alignment Torques (RATs) (later talks)

Pinched Hour Glass Fields in Class 0 YSOs

NGC 1333 IRAS 4A (Girart+ 06) IRAS 16293 A and B (Rao+ 09)

The fields probed here are primarily the envelope fields!

What about the Magnetic Fields in Disks?

Magnetic Fields can Impede Disk Formation

Disks form from the collapse of rotating cores due to conservation of angular momentum

But envelope and disk must be connected THRU magnetic braking

Therefore, disk formation is not guaranteed \Rightarrow Or only SMALL disks can be formed

Slide courtesy Zhi-Yun Li; See Li+ 2014 PPVI

Magnetic Fields can Impede Disk Formation

Disks form from the collapse of	
of ang How to resolve	
But er But er1. Turbulence2. Non ideal MHD effects3. Axis misalignment etc.	
Theref	
guaranteed \Rightarrow Or only SMALL disks can be formed	

Slide courtesy Zhi-Yun Li; See Li+ 2014 PPVI

What do observations tell us about the size scales of these disks?

L1527: Is the Disk really this Large?

L1527: Is the Disk really this Large?

VLA 1623: Disk revealed by Kinematics

Murillo +13: ALMA C18O 2 ->1 observations of VLA1623 A and fitted models.

Disk is 50 AU in size

The Challenge is to Find the Magnetic Field Structure in Disks in YSOs!

Early SMA Sensitive Non Detections in more evolved YSOs

A Toroidal Field: Face On Disk in IRAS 16293B

Class 0 Disk

Disk B Fields in L1527

Class 0 Disk

The Disk B Fields in VLA 1623

Class 0 Disk

The (mostly) Edge-On Disk of HL Tau

>Class 1 Disk

Theoretical Models of the 3-D Structure

(a) θ =90°

(b) θ =60°

Kataoka+ 12 show both toroidal and poloidal structures

The Story So Far ...

Observations show that the fields appear to be mostly **toroidal**

But

We need *poloidal component* of the field in order to drive jets and outflows.

As for the Future...

The Era of ALMA: HL Tau Stokes I

Credit: ALMA (NRAO/ESO/NAOJ); C. Brogan, B. Saxton (NRAO/AUI/NSF)

The Era of ALMA

The Era of ALMA

