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2 x 150 kW motors

150 liters Liquid Na
(100-160 C)

Soft Iron propellers
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Structure of the time-averaged field (exact counter
rotation)

An axial dipole




No reversals in exact counter rotation (stationary regime)
Parameter space
(disks rotate at different speeds)

Stationary regimes

Dynamical regimes (suxh as random or periodic reversals)
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No dynamical regime in exact
counter-rotation




Nonlinear oscillations




Reversals sharing lots of similarities with the geodynamo

300

200

100

- 0

-100

-200

-300

MR,

L

Y

0 500 1000 1500

t (s)



Low dimensional model of field dynamics
with S. Fauve, E. Dormy (LRA) and J.-P. Valet (IPGP)

Symmetry properties of the modes
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Equation for dipole and quadrupole
B(r,t) = d(t)D(r) + q()Q(r)
Let A:d +i q : 4-1 —- /14 + 1./}1 as ’;f)’l _13 o '7)24“)-1 af )?3 _1412 4 /.7>4;‘I3

Phase equation A=rexp(if)

Simplified form 0 = j1; + v; cos (20) — v, sin (20)

If symmetric d— —d . ,. i :

l.e. SR SO b; = ()
flow, q—4q 2 2 ?
Unchanged

under



Magnetic field

b.

= u; — v, sin (26)




Magnetic field ) = p; — v, sin (26)
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Comparison between time series




Effect of turbulent fluctuations:

reversals
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Predictions

Origin and shape of reversals :
- Two modes close to a saddle-node bifurcation
- Slow phase followed by a fast phase

Origin and shape of excursions:
- Aborted reversals

- Same initial phase as reversals but end up without
overshoot

This is observed in the VKS reversal time series
and in the geodynamo one.



Some astrophysical dynamos are hemispherical

The Sun during s

Maunder Minimum ; 3
Few sunspots, k & ”
all in the Southern hemisphere ° )

Ribes and Nesme-Ribes A&A 93

* Mars Surface (Stanley et al. Science 2008)

* Numerical Simulations
Grote et Busse PRE 2001 f
Landau et Aubert 2010 :



An analytical model . cailet Ph.D. , PRE 2009)

- Parametrisation of the induction effect
- Broken symmetry causes reversals

/ e N\, 95% of the energy in the
A Southern hemisphere (at r=R)

Symmetry breaking terms
smaller than 1% of the
symmetric ones

Origin? S
Also a competition between dipole and quadrupole !
It d+i q=r exp(i ), then 0 = p; 4 v; cos (26) — v, sin (26)

If VZ arge, the field is D(r)+Q(r) (or D(r)-Q(r)):
These are hemispherical dynamos!



Localized dynamo (B. Gallet et al. PRL 2012)

E1l is magnetic energy close to disk 1
‘5% ‘ 1r. ¥
E 0.8} ?
lLy.x 6/ " :
A . : .
o4l F1=F2 )
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(F1-F2)/(F1+F2)

First experimental observation of localized dynamo



Are the physical properties of the Earth liquid core or the Sun convective zone
or the galaxy uniform ?

How large are the variations of electrical conductivity?

Is there an effect on the dynamo of the variations of electrical
conductivity in the bulk of the fluid?
(work with A. Alexakis, C. Gissinger and S. Fauve)
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Calculation using scale separation (first order smoothing)



Assume v and eta varies on a small lengthscale |

B=(B)+Db
Large scale field % =V x ({(v x b) — (nV x b)) + n0V2<B>
Small scale field —novzb — <B>VV

The first term is the usual alpha effect <vxb>=a <B>

ol = (27) CiS—L (V(—K) x U(K)),

ok2



The second term is new

3385 = (01 x b) = @) *S 2L (k) (k x 99,

Introducing the vorticity 2 =V X V,

a3y = ~@0) S b (S(-K09) = ~@n) %

on(—k)9; 2, (K)
To k?

Effect requires correlation between diffusivity variations and gradients of vorticity
Creates a current in the direction of vorticity

No need for helicity









Note that some antidynamo theorems do not apply

Dynamo with a planar flow!!

Vv = (Acos(ky)sin(kz), B cos(kx) sin(kz), 0)
onlng = d(cos(kz)(sin(ky) — sin(kx)))

We obtain
(Vv x b) =0and (—inV x b) =6/8(BBx, ABy, —(A+ B)B2z)

For a large scale field such as  exp (pt + 1Kz)




Interest in the geo/stellar or galactic dynamo context?

Usually in MHD models of dynamos:
Consider uniform electrical conductivity

Fast rotation renders flows two dimensional,
Two dimensional flows are not dynamos.

The problem is complicated, DNS donnot observe dynamo at low Eckmann (fast rotation)

But:

If we consider varying electrical conductivity, two dimensionality is not a problem
anymore!

This seems nice for fastly rotating dynamos

Also, no need for helicity



C. Gissinger is running DNS of MHD with variable conductivity
Results using Parody: Ek=1.e-3, Pm=8 et Ra/Rac=1.8

Growth rate of the transverse dipole is increased by conductivity variations
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Shape of the unstable mode

Transverse dipole are more prone to dynamo
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Questions:

How large are the variations of electrical conductivity in astrophysical
dynamos?

For the Sun (or other stars)
Is there a second mode involved in the periodic dynamics.



Amplitude (6)

Ampltude ()

Amplitude (6)

Amplitude (6)
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Above the onset of the saddle-node bifurcation:
a noisy oscillation
The Sun?
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Knaack and Stenflo, A & A, 438 (2005)



