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Seuil	  d’instabilité	  

Structure	  of	  the	  \me-‐averaged	  field	  (exact	  counter	  
rota\on)	  

	  
	  	  	  	  	  	  	  	  	  	  	  An	  axial	  dipole	  	  
	  
	  



No	  reversals	  in	  exact	  counter	  rota8on	  (sta8onary	  regime)	  
Parameter	  space	  	  

(disks	  rotate	  at	  different	  speeds)	  

Sta8onary	  regimes	  

Dynamical	  regimes	  (such	  as	  random	  or	  periodic	  reversals)	  
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No	  dynamical	  regime	  in	  exact	  
counter-‐rota8on	  



Nonlinear	  oscilla\ons	  



Reversals	  sharing	  lots	  of	  similari\es	  with	  the	  geodynamo	  



Symmetry	  proper\es	  of	  the	  modes	  
	  

Low	  dimensional	  model	  of	  field	  dynamics	  
with	  S.	  Fauve,	  E.	  Dormy	  (LRA)	  and	  J.-‐P.	  Valet	  (IPGP)	  
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VKS	  

Earth	  

Dipole	  	  



Equation for dipole and quadrupole 
                           

                           
   

Let A=d+i q,  
 
Phase equation 
 

If symmetric 
flow, 
Unchanged 
under 

i.e.	   so	  

Simplified form 



Magne\c	  field	  



Magne\c	  field	  

Evolu\on	  in	  a	  poten\al	  
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Comparison between time series 

 



Effect	  of	  turbulent	  fluctua\ons:	  
reversals	  



Predictions 
Origin	  and	  shape	  of	  reversals	  :	  
-‐  Two	  modes	  close	  to	  a	  saddle-‐node	  bifurca\on	  
-‐  Slow	  phase	  followed	  by	  a	  fast	  phase	  
	  
Origin	  and	  shape	  of	  excursions:	  
-‐	   	  Aborted	  reversals	  
-‐  Same	  ini\al	  phase	  as	  reversals	  but	  end	  up	  without	  
overshoot	  

	  
This	  is	  observed	  in	  the	  VKS	  reversal	  \me	  series	  	  

and	  in	  the	  geodynamo	  one.	  	  



Some astrophysical dynamos are hemispherical 

The Sun during  

Maunder Minimum 

Few sunspots,  

all in the Southern hemisphere 

* Mars Surface (Stanley et al. Science 2008) 
Ribes and Nesme-Ribes A&A 93 

*  Numerical Simulations 

Grote et Busse PRE 2001 

Landau et Aubert 2010 



 
95% of the energy in the  
Southern hemisphere (at r=R) 
 
Symmetry breaking terms  
smaller  than 1% of the  
symmetric ones 

If	  	  d+i	  q=r	  exp(i	  θ),	  then	  

Origin?  
Also a competition between dipole and quadrupole ! 

If	  	  	  	  	  	  	  is	  large,	  the	  field	  is	  D(r)+Q(r)	  	  (or	  D(r)-‐Q(r)):	  
These	  are	  hemispherical	  dynamos!	  

An analytical model (B. Gallet Ph.D. , PRE 2009) 

- Parametrisation of the induction effect 
- Broken symmetry causes reversals 



(F1-F2)/(F1+F2) 

Localized dynamo (B. Gallet et al.  PRL 2012) 

E1 is magnetic energy close to disk 1 

First	  experimental	  observa\on	  of	  localized	  dynamo	  

F1=F2 



Are the physical properties of the Earth liquid core or the Sun convective zone  
or the galaxy uniform ? 
 
 
How large are the variations of electrical conductivity? 

 
 
Is there an effect on the dynamo of the variations of electrical 
conductivity in the bulk of the fluid? 
(work with A. Alexakis, C. Gissinger and S. Fauve)  
 
 
 
 
 
 
 
 
 
 
 
Calculation using scale separation (first order smoothing) 
 
 

- An open question for geophysics: variation of physical properties in the core and their corre-
lation with flow structure.

Supplementary material.

I leave it here if we need to check something or use it, but we will probably empty that part

1 Mean-field equations

We consider a fluid of electrical conductivity � and magnetic permeability µ0. We note v the
velocity of the fluid. We consider that � and v depend on position.

Using Maxwell equations and Ohm’s law in the approximation of MHD, the equation for the
magnetic field B takes the form

@B

@t

= r⇥ (v ⇥B)�r⇥
 
1

�

r⇥ (
B

µ0
)

!

(6)

We consider spatially periodic fields and note h.i the average over a period of the flow. We
assume that hvi = 0.
We define the magnetic di↵usivity as ⌘ = (�µ0)�1. We write ⌘ = ⌘0 + �⌘ where h⌘i = ⌘0 so
that

@B

@t

= r⇥ (v ⇥B)�r⇥ (�⌘r⇥B) + ⌘0r2B . (7)

We look for an equation for the part of the magnetic field that evolves at large scale compared
to the scale of the flow. We thus write

B = hBi+ b .

We obtain
@hBi
@t

= r⇥ (hv ⇥ bi � h�⌘r⇥ bi) + ⌘0r2hBi . (8)

Substracting this equation to Eq. 1 we obtain the equation for b

@b

@t

� ⌘0r2b = r⇥ (v ⇥B� �⌘r⇥B)�r⇥ (hv ⇥ bi � h�⌘r⇥ bi) . (9)

Solving b from the former equation we can calculate hv ⇥ Bi � h�⌘r ⇥ bi and we will show
that at first order in our expansion, it is equal to ↵

�

.hBi where ↵

�

is a tensor.

We note l the spatial wavelength of the flow and L the one of the large scale field. The expansion
assumes that l ⌧ L,
b ⌧ hBi,
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↵/L ⌧ v/l,
�⌘ ⌧ vL

and �⌘b/l ⌧ vhBi. Then the steady solution of Eq. 9 satisfies

�⌘0r2b = hBi.rv . (10)

This is the same equation as for the usual ↵� e↵ect. By solving if for b, one is able to calculate
hv ⇥ Bi � h�⌘r⇥ bi and thus the ↵

�

tensor.

In order of magnitude, it leads to b ' vl/⌘0hBi = Rm

l

hBi where Rm

l

= vl/⌘0 is the magnetic
Reynolds number at the size of the flow. The di↵erent assumptions then amount to l ⌧ L,
Rm

l

⌧ 1,
Rm

l

⌧ L/l,
�⌘/⌘0 ⌧ vL/⌘0 = Rm

l

L/l

and �⌘/⌘0 ⌧ 1. They are all verified provided that �⌘/⌘0 ⌧ 1 and Rm

l

⌧ 1

2 Some examples of dynamos

A- 2 components, 3 coordinates

As an example we consider the velocity field

v = (A cos(ky) sin(kz), B cos(kx) sin(kz), 0) (11)

and �⌘/⌘0 = �(cos(kz)(sin(ky) � sin(kx))). We obtain

�ByA sin ky sin kz + BzA cos ky cos kz

2⌘0kb = �BxB sin kx sin kz + BzB cos kx cos kz

0

This leads to hv ⇥ bi = 0 and h��⌘r⇥ bi = �/8 (BBx, ABy, �(A + B)Bz).

Searching for a large scale field of the form exp (pt + iKz), we get from Eq 2

p =
|�K|

p
AB

8
� ⌘0K

2
. (12)

One can wonder if the growth rate can be larger for K non parallel to z. Along with Mo↵at, for
a diagonal ↵�tensor with eigenvalues a

i

, and noting K the wavevector of the large scale field
(any direction), there are three values for p, namely, p = �⌘0K

2 and p = �⌘0K

2 ± Q where
Q

2 = a2a3K

2
1 + a1a3K

2
2 + a1a2K

2
3 . A mode is unstable provided Q

2 � ⌘

2
0K

4. In our case we
obtain AB(K2

z

� K

2
x

� K

2
y

) � A

2
K

2
x

� B

2
K

2
y

� ⌘

2
0K

4. It seems that the most unstable mode is
for K

x

= K

y

= 0 as we guessed.

l. In this limit, hBi satisfies a mean-field (closed) equation that reads

@hBi
@t

= r⇥ (↵hBi) + ⌘0r2hBi . (2)

where ↵hBi is the sum of two terms, ↵hBi = hv ⇥ bi � h�⌘r⇥ bi. The small-scale field b can
be calculated as a function of the large scale field. Then ↵ is obtained which closes equation 2.

The term hv ⇥ bi is the usual alpha-e↵ect. It can be expressed using the Fourier transform
of the velocity field v̂ = (2⇡)�3/2 R

v exp(ikr)d3
r where for simplicity we have setl = 2⇡ in all

directions. We obtain

↵

h

u,j

= (2⇡)�3
i⌃

k

k
j

⌘0k2
(v̂(�k) ⇥ v̂(k))

u

. (3)

This is the usual result for the ↵-tensor in an homogeneous fluid. The second term is new and
reads

↵

�

u,j

B
j

= �h�⌘r⇥ bi = (2⇡)�3⌃
k

k.hBi
⌘0k2

�̂⌘(�k) (k ⇥ v̂(k))
u

. (4)

Introducing the vorticity ⌦ = r⇥ v, the new part of the ↵-tensor can be written

↵

�

u,j

= �(2⇡)�3
i⌃

k

k
j

⌘0k2

⇣
�̂⌘(�k)⌦̂

u

(k)
⌘

= �(2⇡)�3⌃
k

�̂⌘(�k) ˆ
@

j

⌦
u

(k)

⌘0k2
(5)

Large value of this ↵� e↵ect requires strong correlation between di↵usivity variations and gradi-
ents of the vorticity. This can be understood by considering the qualitative mechanism sketched
in fig. (1). Consider a vortex centered at x = 0 such that the vorticity increases for x < 0 and
decreases for x > 0. Assume that a large scale magnetic field is applied in the x-direction. Cal-
culating v⇥B, we observe that currents of opposite signs are induced in the y-direction. Then,
the variation of electrical conductivity strengthens the current in one direction and reduces it
in the opposite one. This results in a total electrical current flowing in the y-direction.

Having identified the pertinent properties of the velocity and conductivity field, we now dis-
cuss two examples. Let the velocity be v = (A cos(ky) sin(kz), B cos(kx) sin(kz), 0) and the
di↵usivity variation be �⌘/⌘0 = �(cos(kz)(sin(ky) � sin(kx))). We obtain hv ⇥ bi = 0 and
h��⌘r ⇥ bi = �/8 (BBx, ABy, �(A + B)Bz). The most unstable mode for the large scale

field is of the form exp (pt + iKz), and the growth rate p is p = |�K|
p

AB

8 �⌘0K

2. Dynamo insta-

bility is possible provided Rm = |�|
p

AB/(⌘0|K|) > 8. Note that this flow is two-dimensional
and depends on 3 coordinates. Were the conductivity uniform, no dynamo would be possible.

Our second example is v = (Acos(kz), Ccos(kx)cos(kz), 0) with �⌘/⌘0 = (2acos(kz)+8bsin(kx)sin(kz)).
The flow is simpler than the former one as it is in a plane (x, y) and depends on two coordinates
only (x, z). We obtain hv ⇥ bi = 0 and h��⌘r ⇥ bi = (CbBx, aABz, �bCBz). Assuming
A = C = U and a = b = � and searching for B = exp (pt + iKr) with K = K(0, 1,�2), the
growth rate is p =

p
U�K � 10⌘0K

2. Dynamo action is possible for Rm =
p

U�/(⌘0K) > 10.

This results are confirmed by a numerical resolution of Eq. (1) using a Floquet approach that
allows to investigate large scale separation.

Alex job here

- An open question for geophysics: variation of physical properties in the core and their corre-
lation with flow structure.
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Large scale field 

Small	  scale	  field	  

The	  first	  term	  is	  the	  usual	  alpha	  effect	  

Assume v and eta varies on a small lengthscale l 

<vxb>=α	  <B>	  
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Large value of this ↵� e↵ect requires strong correlation between di↵usivity variations and gradi-
ents of the vorticity. This can be understood by considering the qualitative mechanism sketched
in fig. (1). Consider a vortex centered at x = 0 such that the vorticity increases for x < 0 and
decreases for x > 0. Assume that a large scale magnetic field is applied in the x-direction. Cal-
culating v⇥B, we observe that currents of opposite signs are induced in the y-direction. Then,
the variation of electrical conductivity strengthens the current in one direction and reduces it
in the opposite one. This results in a total electrical current flowing in the y-direction.

Having identified the pertinent properties of the velocity and conductivity field, we now dis-
cuss two examples. Let the velocity be v = (A cos(ky) sin(kz), B cos(kx) sin(kz), 0) and the
di↵usivity variation be �⌘/⌘0 = �(cos(kz)(sin(ky) � sin(kx))). We obtain hv ⇥ bi = 0 and
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This results are confirmed by a numerical resolution of Eq. (1) using a Floquet approach that
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Effect requires correlation between diffusivity variations and gradients of  vorticity 
 
Creates a current in the direction of vorticity 
 
No need for helicity 







Note that some antidynamo theorems do not apply 
 
Dynamo with a planar flow!! 
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2 Some examples of dynamos

A- 2 components, 3 coordinates

As an example we consider the velocity field

v = (A cos(ky) sin(kz), B cos(kx) sin(kz), 0) (11)

and �⌘/⌘0 = �(cos(kz)(sin(ky) � sin(kx))). We obtain

�ByA sin ky sin kz + BzA cos ky cos kz

2⌘0kb = �BxB sin kx sin kz + BzB cos kx cos kz

0

This leads to hv ⇥ bi = 0 and h��⌘r⇥ bi = �/8 (BBx, ABy, �(A + B)Bz).

Searching for a large scale field of the form exp (pt + iKz), we get from Eq 2
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For a large scale field such as 
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Results	  using	  Parody:	  	  	  Ek=1.e-‐3,	  Pm=8	  et	  Ra/Rac=1.8	  
	  
Growth	  rate	  of	  the	  transverse	  dipole	  is	  increased	  by	  conduc\vity	  varia\ons	  
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Shape of the unstable mode 
 
Transverse dipole are more prone to dynamo  



Ques\ons:	  
	  
	  
How	  large	  are	  the	  varia\ons	  of	  electrical	  conduc\vity	  in	  astrophysical	  
dynamos?	  
	  
	  
	  
	  
	  
For	  the	  Sun	  (or	  other	  stars)	  
Is	  there	  a	  second	  mode	  involved	  in	  the	  periodic	  dynamics.	  



Above the onset of the saddle-node bifurcation:  
a noisy oscillation 

The Sun? 

Knaack and Stenflo, A & A, 438 (2005) 


