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  d’instabilité	
  

Structure	
  of	
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  field	
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No	
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  rotate	
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  regimes	
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  regimes	
  (such	
  as	
  random	
  or	
  periodic	
  reversals)	
  

	
  
	
  

	
  

No	
  
dynamo	
  



R	
  

No	
  dynamical	
  regime	
  in	
  exact	
  
counter-­‐rota8on	
  



Nonlinear	
  oscilla\ons	
  



Reversals	
  sharing	
  lots	
  of	
  similari\es	
  with	
  the	
  geodynamo	
  



Symmetry	
  proper\es	
  of	
  the	
  modes	
  
	
  

Low	
  dimensional	
  model	
  of	
  field	
  dynamics	
  
with	
  S.	
  Fauve,	
  E.	
  Dormy	
  (LRA)	
  and	
  J.-­‐P.	
  Valet	
  (IPGP)	
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Equation for dipole and quadrupole 
                           

                           
   

Let A=d+i q,  
 
Phase equation 
 

If symmetric 
flow, 
Unchanged 
under 

i.e.	
   so	
  

Simplified form 
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  field	
  



Magne\c	
  field	
  

Evolu\on	
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  a	
  poten\al	
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Comparison between time series 

 



Effect	
  of	
  turbulent	
  fluctua\ons:	
  
reversals	
  



Predictions 
Origin	
  and	
  shape	
  of	
  reversals	
  :	
  
-­‐  Two	
  modes	
  close	
  to	
  a	
  saddle-­‐node	
  bifurca\on	
  
-­‐  Slow	
  phase	
  followed	
  by	
  a	
  fast	
  phase	
  
	
  
Origin	
  and	
  shape	
  of	
  excursions:	
  
-­‐	
   	
  Aborted	
  reversals	
  
-­‐  Same	
  ini\al	
  phase	
  as	
  reversals	
  but	
  end	
  up	
  without	
  
overshoot	
  

	
  
This	
  is	
  observed	
  in	
  the	
  VKS	
  reversal	
  \me	
  series	
  	
  

and	
  in	
  the	
  geodynamo	
  one.	
  	
  



Some astrophysical dynamos are hemispherical 

The Sun during  

Maunder Minimum 

Few sunspots,  

all in the Southern hemisphere 

* Mars Surface (Stanley et al. Science 2008) 
Ribes and Nesme-Ribes A&A 93 

*  Numerical Simulations 

Grote et Busse PRE 2001 

Landau et Aubert 2010 



 
95% of the energy in the  
Southern hemisphere (at r=R) 
 
Symmetry breaking terms  
smaller  than 1% of the  
symmetric ones 

If	
  	
  d+i	
  q=r	
  exp(i	
  θ),	
  then	
  

Origin?  
Also a competition between dipole and quadrupole ! 

If	
  	
  	
  	
  	
  	
  	
  is	
  large,	
  the	
  field	
  is	
  D(r)+Q(r)	
  	
  (or	
  D(r)-­‐Q(r)):	
  
These	
  are	
  hemispherical	
  dynamos!	
  

An analytical model (B. Gallet Ph.D. , PRE 2009) 

- Parametrisation of the induction effect 
- Broken symmetry causes reversals 



(F1-F2)/(F1+F2) 

Localized dynamo (B. Gallet et al.  PRL 2012) 

E1 is magnetic energy close to disk 1 

First	
  experimental	
  observa\on	
  of	
  localized	
  dynamo	
  

F1=F2 



Are the physical properties of the Earth liquid core or the Sun convective zone  
or the galaxy uniform ? 
 
 
How large are the variations of electrical conductivity? 

 
 
Is there an effect on the dynamo of the variations of electrical 
conductivity in the bulk of the fluid? 
(work with A. Alexakis, C. Gissinger and S. Fauve)  
 
 
 
 
 
 
 
 
 
 
 
Calculation using scale separation (first order smoothing) 
 
 

- An open question for geophysics: variation of physical properties in the core and their corre-
lation with flow structure.

Supplementary material.

I leave it here if we need to check something or use it, but we will probably empty that part

1 Mean-field equations

We consider a fluid of electrical conductivity � and magnetic permeability µ0. We note v the
velocity of the fluid. We consider that � and v depend on position.

Using Maxwell equations and Ohm’s law in the approximation of MHD, the equation for the
magnetic field B takes the form

@B

@t

= r⇥ (v ⇥B)�r⇥
 
1

�

r⇥ (
B

µ0
)

!

(6)

We consider spatially periodic fields and note h.i the average over a period of the flow. We
assume that hvi = 0.
We define the magnetic di↵usivity as ⌘ = (�µ0)�1. We write ⌘ = ⌘0 + �⌘ where h⌘i = ⌘0 so
that

@B

@t

= r⇥ (v ⇥B)�r⇥ (�⌘r⇥B) + ⌘0r2B . (7)

We look for an equation for the part of the magnetic field that evolves at large scale compared
to the scale of the flow. We thus write

B = hBi+ b .

We obtain
@hBi
@t

= r⇥ (hv ⇥ bi � h�⌘r⇥ bi) + ⌘0r2hBi . (8)

Substracting this equation to Eq. 1 we obtain the equation for b

@b

@t

� ⌘0r2b = r⇥ (v ⇥B� �⌘r⇥B)�r⇥ (hv ⇥ bi � h�⌘r⇥ bi) . (9)

Solving b from the former equation we can calculate hv ⇥ Bi � h�⌘r ⇥ bi and we will show
that at first order in our expansion, it is equal to ↵

�

.hBi where ↵

�

is a tensor.

We note l the spatial wavelength of the flow and L the one of the large scale field. The expansion
assumes that l ⌧ L,
b ⌧ hBi,
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↵/L ⌧ v/l,
�⌘ ⌧ vL

and �⌘b/l ⌧ vhBi. Then the steady solution of Eq. 9 satisfies

�⌘0r2b = hBi.rv . (10)

This is the same equation as for the usual ↵� e↵ect. By solving if for b, one is able to calculate
hv ⇥ Bi � h�⌘r⇥ bi and thus the ↵

�

tensor.

In order of magnitude, it leads to b ' vl/⌘0hBi = Rm

l

hBi where Rm

l

= vl/⌘0 is the magnetic
Reynolds number at the size of the flow. The di↵erent assumptions then amount to l ⌧ L,
Rm

l

⌧ 1,
Rm

l

⌧ L/l,
�⌘/⌘0 ⌧ vL/⌘0 = Rm

l

L/l

and �⌘/⌘0 ⌧ 1. They are all verified provided that �⌘/⌘0 ⌧ 1 and Rm

l

⌧ 1

2 Some examples of dynamos

A- 2 components, 3 coordinates

As an example we consider the velocity field

v = (A cos(ky) sin(kz), B cos(kx) sin(kz), 0) (11)

and �⌘/⌘0 = �(cos(kz)(sin(ky) � sin(kx))). We obtain

�ByA sin ky sin kz + BzA cos ky cos kz

2⌘0kb = �BxB sin kx sin kz + BzB cos kx cos kz

0

This leads to hv ⇥ bi = 0 and h��⌘r⇥ bi = �/8 (BBx, ABy, �(A + B)Bz).

Searching for a large scale field of the form exp (pt + iKz), we get from Eq 2

p =
|�K|

p
AB

8
� ⌘0K

2
. (12)

One can wonder if the growth rate can be larger for K non parallel to z. Along with Mo↵at, for
a diagonal ↵�tensor with eigenvalues a

i

, and noting K the wavevector of the large scale field
(any direction), there are three values for p, namely, p = �⌘0K

2 and p = �⌘0K

2 ± Q where
Q

2 = a2a3K

2
1 + a1a3K

2
2 + a1a2K

2
3 . A mode is unstable provided Q

2 � ⌘

2
0K

4. In our case we
obtain AB(K2

z

� K

2
x

� K

2
y

) � A

2
K

2
x

� B

2
K

2
y

� ⌘

2
0K

4. It seems that the most unstable mode is
for K

x

= K

y

= 0 as we guessed.

l. In this limit, hBi satisfies a mean-field (closed) equation that reads

@hBi
@t

= r⇥ (↵hBi) + ⌘0r2hBi . (2)

where ↵hBi is the sum of two terms, ↵hBi = hv ⇥ bi � h�⌘r⇥ bi. The small-scale field b can
be calculated as a function of the large scale field. Then ↵ is obtained which closes equation 2.

The term hv ⇥ bi is the usual alpha-e↵ect. It can be expressed using the Fourier transform
of the velocity field v̂ = (2⇡)�3/2 R

v exp(ikr)d3
r where for simplicity we have setl = 2⇡ in all

directions. We obtain

↵

h

u,j

= (2⇡)�3
i⌃

k

k
j

⌘0k2
(v̂(�k) ⇥ v̂(k))

u

. (3)

This is the usual result for the ↵-tensor in an homogeneous fluid. The second term is new and
reads

↵

�

u,j

B
j

= �h�⌘r⇥ bi = (2⇡)�3⌃
k

k.hBi
⌘0k2

�̂⌘(�k) (k ⇥ v̂(k))
u

. (4)

Introducing the vorticity ⌦ = r⇥ v, the new part of the ↵-tensor can be written

↵

�

u,j

= �(2⇡)�3
i⌃

k

k
j

⌘0k2

⇣
�̂⌘(�k)⌦̂

u

(k)
⌘

= �(2⇡)�3⌃
k

�̂⌘(�k) ˆ
@

j

⌦
u

(k)

⌘0k2
(5)

Large value of this ↵� e↵ect requires strong correlation between di↵usivity variations and gradi-
ents of the vorticity. This can be understood by considering the qualitative mechanism sketched
in fig. (1). Consider a vortex centered at x = 0 such that the vorticity increases for x < 0 and
decreases for x > 0. Assume that a large scale magnetic field is applied in the x-direction. Cal-
culating v⇥B, we observe that currents of opposite signs are induced in the y-direction. Then,
the variation of electrical conductivity strengthens the current in one direction and reduces it
in the opposite one. This results in a total electrical current flowing in the y-direction.

Having identified the pertinent properties of the velocity and conductivity field, we now dis-
cuss two examples. Let the velocity be v = (A cos(ky) sin(kz), B cos(kx) sin(kz), 0) and the
di↵usivity variation be �⌘/⌘0 = �(cos(kz)(sin(ky) � sin(kx))). We obtain hv ⇥ bi = 0 and
h��⌘r ⇥ bi = �/8 (BBx, ABy, �(A + B)Bz). The most unstable mode for the large scale

field is of the form exp (pt + iKz), and the growth rate p is p = |�K|
p

AB

8 �⌘0K

2. Dynamo insta-

bility is possible provided Rm = |�|
p

AB/(⌘0|K|) > 8. Note that this flow is two-dimensional
and depends on 3 coordinates. Were the conductivity uniform, no dynamo would be possible.

Our second example is v = (Acos(kz), Ccos(kx)cos(kz), 0) with �⌘/⌘0 = (2acos(kz)+8bsin(kx)sin(kz)).
The flow is simpler than the former one as it is in a plane (x, y) and depends on two coordinates
only (x, z). We obtain hv ⇥ bi = 0 and h��⌘r ⇥ bi = (CbBx, aABz, �bCBz). Assuming
A = C = U and a = b = � and searching for B = exp (pt + iKr) with K = K(0, 1,�2), the
growth rate is p =

p
U�K � 10⌘0K

2. Dynamo action is possible for Rm =
p

U�/(⌘0K) > 10.

This results are confirmed by a numerical resolution of Eq. (1) using a Floquet approach that
allows to investigate large scale separation.

Alex job here

- An open question for geophysics: variation of physical properties in the core and their corre-
lation with flow structure.
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Large scale field 

Small	
  scale	
  field	
  

The	
  first	
  term	
  is	
  the	
  usual	
  alpha	
  effect	
  

Assume v and eta varies on a small lengthscale l 

<vxb>=α	
  <B>	
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Large value of this ↵� e↵ect requires strong correlation between di↵usivity variations and gradi-
ents of the vorticity. This can be understood by considering the qualitative mechanism sketched
in fig. (1). Consider a vortex centered at x = 0 such that the vorticity increases for x < 0 and
decreases for x > 0. Assume that a large scale magnetic field is applied in the x-direction. Cal-
culating v⇥B, we observe that currents of opposite signs are induced in the y-direction. Then,
the variation of electrical conductivity strengthens the current in one direction and reduces it
in the opposite one. This results in a total electrical current flowing in the y-direction.

Having identified the pertinent properties of the velocity and conductivity field, we now dis-
cuss two examples. Let the velocity be v = (A cos(ky) sin(kz), B cos(kx) sin(kz), 0) and the
di↵usivity variation be �⌘/⌘0 = �(cos(kz)(sin(ky) � sin(kx))). We obtain hv ⇥ bi = 0 and
h��⌘r ⇥ bi = �/8 (BBx, ABy, �(A + B)Bz). The most unstable mode for the large scale

field is of the form exp (pt + iKz), and the growth rate p is p = |�K|
p

AB

8 �⌘0K

2. Dynamo insta-

bility is possible provided Rm = |�|
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AB/(⌘0|K|) > 8. Note that this flow is two-dimensional
and depends on 3 coordinates. Were the conductivity uniform, no dynamo would be possible.

Our second example is v = (Acos(kz), Ccos(kx)cos(kz), 0) with �⌘/⌘0 = (2acos(kz)+8bsin(kx)sin(kz)).
The flow is simpler than the former one as it is in a plane (x, y) and depends on two coordinates
only (x, z). We obtain hv ⇥ bi = 0 and h��⌘r ⇥ bi = (CbBx, aABz, �bCBz). Assuming
A = C = U and a = b = � and searching for B = exp (pt + iKr) with K = K(0, 1,�2), the
growth rate is p =

p
U�K � 10⌘0K

2. Dynamo action is possible for Rm =
p

U�/(⌘0K) > 10.

This results are confirmed by a numerical resolution of Eq. (1) using a Floquet approach that
allows to investigate large scale separation.
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Effect requires correlation between diffusivity variations and gradients of  vorticity 
 
Creates a current in the direction of vorticity 
 
No need for helicity 







Note that some antidynamo theorems do not apply 
 
Dynamo with a planar flow!! 
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and �⌘b/l ⌧ vhBi. Then the steady solution of Eq. 9 satisfies

�⌘0r2b = hBi.rv . (10)

This is the same equation as for the usual ↵� e↵ect. By solving if for b, one is able to calculate
hv ⇥ Bi � h�⌘r⇥ bi and thus the ↵
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tensor.

In order of magnitude, it leads to b ' vl/⌘0hBi = Rm
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2 Some examples of dynamos

A- 2 components, 3 coordinates

As an example we consider the velocity field

v = (A cos(ky) sin(kz), B cos(kx) sin(kz), 0) (11)

and �⌘/⌘0 = �(cos(kz)(sin(ky) � sin(kx))). We obtain

�ByA sin ky sin kz + BzA cos ky cos kz

2⌘0kb = �BxB sin kx sin kz + BzB cos kx cos kz

0

This leads to hv ⇥ bi = 0 and h��⌘r⇥ bi = �/8 (BBx, ABy, �(A + B)Bz).

Searching for a large scale field of the form exp (pt + iKz), we get from Eq 2
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For a large scale field such as 
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  rota\ng	
  dynamos	
  
	
  
Also,	
  no	
  need	
  for	
  helicity	
  



C.	
  Gissinger	
  is	
  running	
  DNS	
  of	
  MHD	
  with	
  variable	
  conduc\vity	
  	
  
	
  
Results	
  using	
  Parody:	
  	
  	
  Ek=1.e-­‐3,	
  Pm=8	
  et	
  Ra/Rac=1.8	
  
	
  
Growth	
  rate	
  of	
  the	
  transverse	
  dipole	
  is	
  increased	
  by	
  conduc\vity	
  varia\ons	
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Shape of the unstable mode 
 
Transverse dipole are more prone to dynamo  



Ques\ons:	
  
	
  
	
  
How	
  large	
  are	
  the	
  varia\ons	
  of	
  electrical	
  conduc\vity	
  in	
  astrophysical	
  
dynamos?	
  
	
  
	
  
	
  
	
  
	
  
For	
  the	
  Sun	
  (or	
  other	
  stars)	
  
Is	
  there	
  a	
  second	
  mode	
  involved	
  in	
  the	
  periodic	
  dynamics.	
  



Above the onset of the saddle-node bifurcation:  
a noisy oscillation 

The Sun? 

Knaack and Stenflo, A & A, 438 (2005) 


