## Introduction

Magnetic fields are ubiquitous in the Galaxy. They permeate the interstellar medium and extend beyond the Galactic disk, and they are present in stars, supernova remnants, pulsars and interstellar clouds. The magnetic fields play a important
First of all to study the magnetic fields in our own Galaxy. It is important to better understand the strength, direction and structure of magnetic fields in the Milky Way. The Galactic magnetic field (GMF) has received considerable attention yet it remains poorly understood, even though the first detection of Galactic polarization was several decades ago (Wielebinski et al. 1962; Westerhout et al. 1962). As most observables are integrated quantities along the line of sight, our position at Galactocentric radius of about 8.5 kpc requires modeling of the field to interpret the observed data. A much used and very productive observational
method to study of the GMF is the Faraday rotation measure (RM). When a linearly polarized electromagnetic wave passes a magnetized thermal medium its polarization angle experiences rotation, called Faraday rotation. The rotation is proportional to the square of the wavelength and the coefficient is the RM, which can be written as

$$
R M \propto \int_{0}^{L} n_{e} B_{\|} d l
$$

where the integral range is along the line of sight from the observer to the source at a distance

## Background

Nowadays modelling of Galactic magnetic fields can be done with a high level of details (see. e.g. Jaffe
This all is possible with the availability of all-sky data of Faraday rotation measures (Oppermann et al. 2012) and polarised synchrotron emission obtained by space missions like WMAP or Planck (Fauvet et al. 2012). The typical approach utilises $\chi^{2}$ minimisation for fitting a large number of free parameters. To better understand the Galactic magnetic fields we present model of the Milky Way using 3D MHD numerical simulations based on cosmic-ray driven dynamo. For our calculations we use information from observations (see Model Section) and create model of magnetic fields in the Milky Way. After this we compare synthetic rotation measure maps with existing RM data We aim to find out whether it is possible to reproduce the observed RM distribution in the sky with a modeled Milky Way galaxy as evolved from MHD simulations

## Model

The computations of the evolution of Galactic magnetic fields in our Galaxy are done by solving the isothermal non-ideal MHD equations of the form

$$
\frac{\partial \vec{v}}{\partial t}+(\vec{v} \cdot \nabla) \vec{v}=-\frac{1}{\rho} \nabla\left(p+p_{c r}+\frac{B^{2}}{8 \pi}\right)+\frac{\vec{B} \cdot \nabla \vec{B}}{4 \pi \rho}-\nabla \Phi
$$

$$
\frac{\partial \vec{B}}{\partial t}=\nabla \times(\vec{v} \times \vec{B}-\eta \nabla \times \vec{B}),
$$

## $\nabla \cdot \vec{B}=0$,

where $\vec{v}$ is the large-scale velocity of gas, $\rho$ is the gas density distribution, $p$ is the gas pressure, $p_{c r}$ is the cosmic-ray pressure, $\Phi$ is the gravitational potential, $B$ is the magnetic induction, $e$ is the thermal energy density and $\eta$ is the turbulent magnetic diffusivity. An isothermal equation of state was assumed, that is $p=\rho c_{s}^{2}$, where $c_{s}$ is the isothermal speed of sound. Our model of the Milky Way galaxy consists of four components: the large massive halo, the central bulge, the rotating disk of stars, and the bar. They are represented by different analytical gravitational potentials. The isochrone gravitational potential of the form

$$
\Phi_{I G P}=-\frac{G M_{I G P}}{a_{I G P}+\sqrt{a_{I G P}^{2}+r^{2}}},
$$

where $M_{I G P}$ is the total mass, $a_{I G P}$ is its characteristic scale length, and $r$ is the distance to the galactic center in cylindrical coordinates $(r, \phi, z)$ The Plumber potential of the form

$$
\Phi_{P}=-\frac{G M_{P}}{\sqrt{z^{2}+a_{P}^{2}+r^{2}}}
$$

The Miamoto-Nagai potential of the form:
$a_{d}$ is the disk scalelength, $b_{d}$ is the disk scaleheight.
We investigated the problem of propagation of cosmic ray (CR) transport (Schlickeiser \& Lerche 1985) in the ISM by solving the following diffusionadvection equation:

$$
\frac{\partial e_{c r}}{\partial t}+\nabla\left(e_{c r} \vec{v}\right)=\nabla\left(\hat{K} \nabla e_{c r}\right)-p_{c r}(\nabla \cdot \vec{v})+C R_{\text {source }},
$$

where $e_{c r}$ is the cosmic ray energy density, $p_{c r}=\left(\gamma_{c r}-1\right) e_{c r}$ is the cosmic ray pressure, $K$ is the diffusion tensor, $v$ is the gas velocity and $C R_{\text {source }}$ is $10^{51} \mathrm{erg}$ of the SNe kinetic energy from their outburst is transformed into the $10{ }^{50}$ erg of the Ne kinetic energy from their outburst is transformed into the CR energy and leave out the thermal energy, applying the value of adiabatic
index for the CR gas as $\gamma_{c r}=14 / 9$ and adding the CRs pressure to the total index for the CR gas as $\gamma_{c r}=14 / 9$ and adding the CRs pressure to the total
pressure in the ISM gas motion equation as $\nabla p_{c r}$ (Berezinski et al. 1990). It is also assumed that the CR gas diffuses anisotropically (Ryu et al. 2003). The CR diffusion tensor $K$ is defined as:

$$
K_{i j}=K_{\perp} \delta_{i j}+\left(K_{\|}-K_{\perp}\right) n_{i} n_{j},
$$

where $K_{\perp}$ and $K_{\| \|}$are the parallel and perpendicular (with respect to the local magnetic field direction) cosmic-ray diffusion coefficients and $n_{i}=B_{i} / B$ are
components of unit vectors tangent to the magnetic field lines.

## Discussion and Future Work

Due to the unpredictability of magnetic field structure in MHD simulations and the fact that the real Milky Way is only one realization of many possibilities, it is inherently difficult to compare rotation measure maps from MHD simulations of significant correspondences between models and observations, most notably the presence of a magnetic field reversal in the Galactic disk, the quadrupolar (butterfly, odd parity) pattern of RMs in the inner Galaxy and a dipolar (even parity) structure in the outer Galaxy, Uncertainties in estimates of the input parameters make predictions difficult.
Some features of the models are still distinctly different from the observations to be studied in the near future. E.g. the RM values in the models are still too low, especially at large Galactocentric radii ( $>8 \mathrm{kpc}$ ), and the quadrupolar pattern is very asymmetric with respect to the plane.

## References

Berezinski, V. S., Bulanov, S. V., Dogiel, V. A., Ginzburg, V. L.,Ptuskin, V. S Astrophysics of cosmic rays, Amsterdam:North-Holland, 1990.
Faucet, L., Macias-Perez, J. F., Safe, T. R., et al. 2012, A\&A, 540, A122 Jefe, T. R., Banday, A. J., Leahy, J. P. Leach, S. \& Strong A. W. 2011, MNRAS, 416, 1152 .
Jefe, T. R., Leahy, J. P., Banday, A. J., et al. 2010, MNRAS, 401, 1013
Jonson, R. \& Farrar G. R 201, Jonson, R. \& Farrar, G. R. 2012, ApJ, 757, 14
Oppermann, N., Junklewitz, H., Robbers, G., et al. 2012, A\&A, 542, A93 Oppermann, N., Junklewitz, H., Robbers, G., et al. 2012, A\&A, 542, A
Rya, D., Kim, J., Hong, S. S. \& Jones, T. W., 2003, Ap.J, 589, 338 Schlickeiser, R. \& Lerche, I., 1985, A\&A, 151, 151 Wielebinski, R., Shakeshaft, J. R., \& Pauliny-Toth, I. I. K. 1962, The Obser Watery, 82,158 Wester. In, G., Seeger, C. L., Brouw,W. N., \& Tinbergen, J. 1962, Bull. As tron. Inst. Netherlands, 16, 187
Van Eck, C. L., Brown, J. C., Stile, J. M., et al. 2011, ApJ, 728, 97

Acknowledgements
This research was supported by Po
ports are gratefully acknowledged.

## Results

Using MHD numerical simulations based on cosmic-ray driven dynamo, we prepared models of our Galaxy. Precise reconstruction of a Milky Way-like galaxy proved difficult, since correct input parameters often failed to produce spiral arms and/or a correct rotation curve. Therefore, we selected relevant models with the following method. We focus on three parameters: first if our input parameters (table above) fit with the observational data, second if the synthetic rotation curve matches with the data and the last one if spiral arms appear in our simulations. Unfortunately we didn't get the model with all three parameters, but still models with two of them give interesting results. We present three reference models M101, where the synthetic rotation curve does not match, M011 where one of input parameters does not match with observational values and the last one M110, where the spiral arms not appear.
In the table we present input parameters for this three models of Galactic magnetic fields, calculated using MHD simulations based on cosmic-ray driven dynamo.

| parameter | meaning |
| :--- | :--- |
| $M_{d}$ | disk mass |
| $a_{d}$ | length scale of the disk |
| $b_{d}$ | height scale of the disk |
| $M_{b}$ | bulge mass |
| $a_{b}$ | length scale of the bulge |
| $b_{d}$ | height scale of the bulge |
| $M_{h}$ | halo mass |
| $a_{h}$ | length scale of the halo |
| $M_{\text {bar }}$ | bar mass |
| $a_{\text {bar }}$ | length scale of bar major axis |
| $b_{\text {bar }}$ | length scale of bar minor axis |
| $c_{\text {bar }}$ | length scale of bar vertical axis |


| M101 | M011 | M110 | units |
| :--- | :--- | :--- | :--- |
| $7.0 \cdot 10^{10}$ | $6.0 \cdot 10^{10}$ | $7 \cdot 10^{10}$ | $M_{\odot}$ |
| 5.0 | 0.9 | 3.5 | kpc |
| - | - | 0.5 | kpc |
| $1.5 \cdot 10^{10}$ | $1.5 \cdot 10^{10}$ | $1.7 \cdot 10^{10}$ | $M_{\odot}$ |
| 1.75 | 5.0 | 1.75 | kpp |
| - | 0.5 | - | kpc |
| $1.2 \cdot 10^{10}$ | $1.2 \cdot 10^{10}$ | $2.2 \cdot 10^{10}$ | $M_{\odot}$ |
| 15.0 | 15.0 | 20.0 | kpc |
| $1.5 \cdot 10^{10}$ | $1.5 \cdot 10^{10}$ | $1.5 \cdot 10^{10}$ | $M_{\odot}$ |
| 6.0 | 6.0 | 6.0 | kpc |
| 3.0 | 3.0 | 3.0 | kpc |
| 2. | 2.5 | 2.5 | kpc |

MODEL 101


ROTATAION CURVE
250

MODEL 110


ROTATAION CURVE

SUN position


Top panels present synthetic Faraday rotation maps in the plane of Galaxy for three reference models for time step 14 Gyr. The red area denotes the positive RM and purple area denotes the negative RM. The maps that are centered on the Galactic center with positive Galactic latitudes at the top and positive Galactic longitudes plotted to the left. Middle panels: the rotation curve with rotation velocity in $\frac{\mathrm{km}}{\mathrm{s}}$ and radial distance in kpc. Bottom panels: image of gas density, where the sun is denoted as the yellow circle, at Galactocentric radius 8.5 kpc . In models M101 and M011, we observe a dipolar structure in RM at Galactic longitude $\ell<100^{\circ}$; at $\ell>100^{\circ}$, the dipolar structure has reversed, where negative values at the left edge of the map and positive ones on the very right, reflecting the observed reversal in the inner Milky Way. In the third model M110, the structure of Galactic magnetic fields have only dipolar structure In the physical Galactic Faraday map below from Oppermann et al. (2012), we can observe the quadrupole-like structure on large scales that favors positive Faraday depths in the upper left and lower right quadrant and negative Faraday depths in the upper right and lower left quadrant. At the Galactic longitude beyound $\pm 100^{\circ}$ we can notice the dipolar structure of magnetic fields, with negative values at the left edge and positive at the right edge of the map.


Compare our results with numerical simulations, we can find three similarities:
. The structure of Galactic magnetic fileds in the Galaxy plane are similar and have structure
At high longitudes in both cases we can observed dipolar structure of magnetic fields,
. In some models we can find a quadrupole at longitudes $|\ell|<100$

