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Contexts

O Transport of energetic particles in turbulent magnetized
media
= Solar corona
» [nterplanetary medium, heliosphere
» [nter-stellar/-galactic medium
= Energetic particle sources: shocks, reconnection, shear flows

O Here: 1) focus on interstellar medium and shocks 2) focus
on high-energy cosmic rays (E > GeV)
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Why MagnetoHydroDynamics ?

-1
Q High-energy CRs: Larmor radius |r, ~107 pC( Z )( = )

 Resonate with wavelengths A ~r; in MHD regime; i.e. long-
wavelength regime A>v,/w ~6x10"'pc n'/?

 Note bene: Not always the case (need to go beyond MHD)
= MeV particle transport (Jean+09)

» Thermal-non-thermal transition as in the shock injection
process (Levinson’96)

= Relativistic shock turbulence (Pelletier+09, Plotnikov+13)
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Methodology I: Particle-in-cell

O Solving the Lorentz equation:

%= 0oE +q(v x (B +9B))

O B background (largest scale) magnetic field + (0E,0B)
perturbed EM components.

O The EM field is known on a grid => interpolation at the
particle position.

O The Lorentz Eq. has to be integrated => integration schemes.

(see Lapenta: https://perswww.kuleuven.be/~u0052182 /pic/book.pdf; Birdsall &
Langdon’04)
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PIC method a particle = Particle-in-cell code integration sketch
super-particle = N

particle per grid cell

Integration
Lorentz Eq.=first
moment of Vlasov Eq. Particle mover |
Fp -> Xp )
A 4
Particle -> Grid Grid -> Particle
Xp -> Ng, Jg Eg,Bg->Fp
A
- Field Solver
| Ng,Jg->Eg,B i
sources terms: charge & 99 9 B9 Interp(?l;latlon (_)f_EM
current densities in each at particle position

cell (interpolation) EM on the grid

https://perswww.kuleuven.be/~u0052182 /pic/book.pdf
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Methodology II: PIC-MHD

(d The EM field is calculated from a MHD code.

O Until now MHD = one fluid MHD = electron+proton,
PIC=energetic particles only.

O Different from hybrid methods (e.g. Gargaté’07), or
pure PIC methods (Lorentz+Maxwell Egs system).
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Particle-in-cell -MHD code integration sketch

Integration particle pusher may be
sub-cycled wrt MHD

Particle mover

A

Fp > Xp
MHD EM field
Y
Particle -> Grid Grid -> Particle
Xp -> Ng, Jg Eg,Bg->Fp
A
MHD

- Field Solver

| Ng,Jg->Eg, B :
sources terms: charge & 999> 9, B9 Interp(?l;latlon (_)f_EM
current densities in each at particle position

cell (interpolation) EM on the grid

https://perswww.kuleuven.be/~u0052182 /pic/book.pdf
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An alternative method (useful in
astrophysics): multi-fluid approach

Adding a (or several) CR fluid component:
(e.g. Dubois & Commergon’15, Hanasz & Lesch’03)

op

5 + V(ew)=0, (1)
P, =T -1e, +(Tx-De,+B* /87

Bg;;u + V. <puu + Ptot — le—B) O (2) . eth 0 eCR

e B ( B. u) Difficult task: Div (F)

= + V. ((e + Prot)U — ) = implicit schemes (see

= —V.Feond — V.FCR. (3) Dubois & Commerg¢on’15)

oB

o = V x (u X B) =0, (4) + Handling back-reaction, can
Bex use several CR populations.
5 t V.(egu) = —peV.u — V.F¢ong + Her (5) - Specify 'y, k (averaged
Oeer diffusi fficient

;t b V.(eatt) = —puVott — V.For. (6) iffusion coefficient)

=> Novak, Hanasz posters
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Application I: interstellar
studies

O Cosmic ray transport in MHD turbulence in the
interstellar medium.

d Important aspect: V_/c << 1
= [f we consider relativistic particles moving in ISM, hence
= Magnetostatic limit can be used (neglect oE)

= In case of propagation of TeV-PeV particles hence pg, Jr can
be neglected in the MHD source terms: Test-particle limit.

=> Seta poster

O This does not mean that stochastic acceleration is not
intersting or that TeV-PeV CR cannot back-react over the
magnetized fluid (around/in CR sources)
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Particle-in-cell -MHD code integration sketch

Integration

Particle mover

A

Fp > Xp
MHD EM field
Y
Particle -> Grid Grid -> Particle
Xp -> Ng, Jg Eg,Bg->Fp
A
MHD

- Field Solver

| Ng,Jg->Eg, B :
sources terms: charge & 999> 9, B9 Interp(?lzlatlon (_)f_EM
current densities in each at particle position

cell (interpolation) EM on the grid

https://perswww.kuleuven.be/~u0052182 /pic/book.pdf
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Particle-in-cell -MHD code integration sketch: magnetostatic

test-particle calcualtions
Integration

Particle mover

A

Fp -> Xp
MHD &M field
Y
Grid -> Particle
Eg,Bg->Fp
MHD
Field Solver
Ng, Jg -> Eg, Bg Interpolation of EM
at particle position
#M on the grid

https://perswww.kuleuven.be/~u0052182 /pic/book.pdf
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Large scale injected
turbulence

 Set-up:
= 3D simulations periodic boxes
= MHD snapshots << magnetic realizations

= Cosmic Ray mean free paths: integrate trajectories and
average over the magnetizations.

4 Forcing:
= Forcing the velocity field => F in the source term of Euler
Egs.
= Usually incompressible forcing: div.F=0. : In the ISM <> shear
flows.
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Incompressible MHD turbulence

parallel Dr, versusr,

Large-scale-injected turbulence
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Compressible MHD turbulence

perpendicular mean free path versus M, rms distance between particles versus
1° | | | - parallel distance along MF
Xu & Yan’13
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Consistent with M_* scaling expected perpendicular transport over scales
in sub-Alfvénic turbulence with parallel < Lepat M,=0.4
mean free path > L_, (Yan & Lazarian’08) I
expected: M* L, v/3 super-diffusive transport
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Compressible MHD turbulence: effect of forcing

geometry

O Ornstein-Uhlenbeck forcing (Federrath+08) with both incompressible
(div.F=0) and compressible (curl F=0) geometries (Cohet & AM’15).

O In the ISM we can also have compressible mode injection <~ supernova
remnants, massive star winds.
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rigidity dependences
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Application II: Astrophysical
shocks

A PIC-MHD are coupled => source Tycho SNR
4-6 keV X-rays: blue <

terms in MHD Eq. 2
, [ _ synchrotron radiation by TeV
1 Diffusive shock acceleration and aladtrons

magnetic field amplification in

supernova remnant (SNR)

shocks.

= Magnetic field is turbulent in
young SNR.

= Field amplitude can be two orders
of magnitude above standard ISM
values.
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PIC-MHD shock studies

O Precursor studies:
= CR propagation in snapshots Reville+08
= Full coupling Reville &Bell'11

1 Full shock structure studies:

= Non-resonant streaming instability and CR acceleration
Bai+15
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Sources terms in MHD Eq.

O CR: charge density n.; and current Jg=n gucg: calculated from the sum of
contribution of each CR.

O The main effect of CR => CR-Hall term in the Ohm law; namely:

el _& < B— [nCR (UCR = ugj < B In highly super-Alfvenic
o In, | C shocks
g Ucg~Ugy>> V~u, it
] compensates n_<<|n_|
O The force induced by CR over the fluid:

v
Fr=(- R)(nCREind +Jer/Cx B); R=ny/|n, k<1
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transition to relativistic regime
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2D simulations
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Perspectives

J Numerics: some lands to clear:
= PIC-MHD on AMR grids.
= Relativistic PIC-MHD.

O Physics: (multi)thesis subjects:
= [SM studies:
= MHD modes impact over CR transport.
= Self-generated wave contribution.
= (CR back-reaction over ISM.
= Shock studies:

= Parametric survey (magnetization, obliquity, velocity regime,
see e.g. L.Sironi this session in the case of relativistic shocks).

= CRescape problem
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Conclusions

O PIC-MHD methods:
» [nvestigate scales related to mildly-relativistic to
relativistic cosmic rays.

» Interstellar medium studies
= Parallel mean free path: effect of MHD modes (forcing studies)

» Perpendicular mean free path: test of the effect of field line wandering
and analytic turbulence models

= Shock studies:
= development of non-resonant instability in fast supernova remnant

shocks.
* injection into the relativistic domain and Fermi acceleration seems to

be verified.
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Back-up

 Examples of Lorentz Eq. integration schemes.
1 Examples of EM field interpolation schemes.
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Integration schemes

d Main schemes:

» Leap-frog (second order scheme).
= Runge-Kutta 5% order.
= Bulirsch-Stoer method.
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Field interpolation schemes
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Non-resonant instability

O Instability triggered by the super-Alfvénic streaming of
CR in the background (ISM) medium (Bell’04, ‘05)

= (Generates modes 7\<<I’L (Larmor radius of triggering particles)

= Growth rate + unstable wave-number:

1 Added-value PIC-MHD (CR-Hall term effect) system
(Bai+15)

= Reduced growth rate and wave number.
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effect of injection

density magnetic field

B8

» Filaments develop up-stream <> non-linear stage of the non-resonant instability
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