The link between magnetic fields and cloud/star formation

Hua-bai Li

香港中文大學 The Chinese University of Hong Kong

Cloud magnetic-field (B-field) morphologies

1. which morphology is closer to reality?

Federrath+, ApJ 2011

Nakamura & Li, ApJ 2008

2. consequences of the field morphology on: gas velocity, cloud shapes, fragmentation, etc

Observation tools	how to observe	results	note
Dust grain alignment :	<i>polarization</i> of dust thermal emission	ТB	A _v > 100 mag
a grain spins along the short axis, which precesses around B fields	<i>polarization</i> of background star light	// B	A _v < 5 mag
Zeeman effect	freq. splitting of <i>circular</i> line polarization	B _{los}	difficult due to small B
1s Spectra No Field Magnetic Field	<i>linear</i> line polarization	⊥ or // B	Goldreich-Kylafis effect

Polarization Holes

ORION KL

SVS 13

1

1

1

TADPOL 10%

SCUBA 10%

Tang & Li in prep.

FIRST MULTISCALE STUDY of CLOUD MAGNETIC FIELDS from 10² to 10⁻² pc

NGC 6334

Li, Yuen, Otto, Leung, Tang, Zhang+ 2015

Clump shapes and B-p relations

Tritsis et al. (2015)

Black arrows represent the direction of the magnetic field and bold red arrows the contraction. The $B \propto \rho^{2/3}$ relation is uniquely associated with spherical contraction

30-

Li, Yuen, Otto, Leung, Tang, Zhang+ 2015

30-

0

0

0.2

0.4

0.8

0.6

1.2

1

log(n/n₀)

1.4

. 1.6 1.8

2

Li, Yuen, Otto, Leung, Tang, Zhang+ 2015

NGC 6334 is a special case?

Probably not!

Milky Way is a special case?

Probably not!

The first Bird's-eye View of MC B-fields

Galactic B fields define cloud contraction density threshold

So clouds B always?

Li+ 2009, 2011

When Galactic B fields anchor deeply into molecular clouds

Turbulence anisotropy? Only observed for $A_v < 3$ in Taurus

Do we see velocity anisotropy decreasing with N in *sub-Alfvenic* simulations?

2nd order structure function: (scale *l*, POS angle φ)

$$SF_V(l,arphi) = \left\langle \left(V(ec{r}) - V(ec{r} + l\hat{e}_arphi)
ight)^2
ight
angle$$

For each scale *l*, fit to: $SF_V(l, arphi) \sim c_l \left(1 - b_l \cos[2(arphi - lpha_l)]
ight)$

Yes, when *gravity* is turned on!

Summary

1. which morphology closer to reality?

Federrath+, ApJ 2011

Nakamura & Li, ApJ 2008

2. consequences of the field morphology: *turbulence anisotropy observed for* $A_v < 3-5$, *cloud shapes tend to be // or* B (*Gould belt*) and $B \propto \rho^{0.4}$.(*NGC 6334*)