Statistical properties of polarized dust emission : lessons from a toy model of the turbulent and magnetized interstellar medium

François Levrier

LERMA, Observatoire de Paris, PSL, CNRS, UPMC, ENS Paris

Thanks to Jérémy Neveu

Magnetic Fields in the Universe V, Cargèse, 5-9 October 2015

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

The Planck view of the Galactic magnetic field

Planck intermediate results XIX, XX, XXI, XXII, XXX, XXXII, XXXII, XXXIV, XXXV, XXXVIII

Polarized emission towards Ophiuchus

Polarization fraction

Polarization angle dispersion function

$$p = \frac{\sqrt{Q^2 + U^2}}{I}$$

$$\mathcal{S}(\boldsymbol{r}, \delta) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left[\psi(\boldsymbol{r} + \boldsymbol{\delta}_i) - \psi(\boldsymbol{r})\right]^2}$$

72

64

56

48

0

 $\mathcal{S}(\delta\!=\!16')$ [

24

16

8

Λ

16' lag δ

Polarization fraction vs. column density

Anti-correlation robust with respect to polarization S/N

Angular dispersion vs. polarization fraction

Building simulated polarized emission maps

- Ideal MHD with self-gravity
- An 18 pc subset of a 50 pc simulation cube
- Converging flows of magnetized warm gas
- Mean magnetic field along the flows
- Rotation of the cube, placed at 100 pc
- Simulated Stokes maps at 353 GHz smoothed at 15'

$$I = \int S_{\nu} e^{-\tau_{\nu}} \left[1 - p_0 \left(\cos^2 \gamma - \frac{2}{3} \right) \right] d\tau_{\nu}$$
$$Q = \int p_0 S_{\nu} e^{-\tau_{\nu}} \cos \left(2\phi \right) \cos^2 \gamma d\tau_{\nu}$$
$$U = \int p_0 S_{\nu} e^{-\tau_{\nu}} \sin \left(2\phi \right) \cos^2 \gamma d\tau_{\nu}$$

« Intrinsic dust polarization parameter » $p_0 = 0.2$ Opacity at 353 GHz (Planck Collaboration XXXI, 2014) $\tau_{353}/N_{\rm H} = 1.2 \times 10^{-26} \,{\rm cm}^2$

Dust temperature

 $T_d = 18\,\mathrm{K}$

See also Diego Falceta-Gonçalves' talk

Hennebelle et al. 2008

starformat.obspm.fr

Simulations vs. Observations

with $N_{\rm H}$ in the range 10^{21} to 2×10^{22} cm⁻²

See also Diego Falceta-Gonçalves' talk

Simulations vs. Observations

Global trend is reproduced, but simulations tend to have too high an angular dispersion

From reality to observables and back again ?

We wish to constrain the statistical properties of the interstellar B field

Building a toy dust density field

log-density built as a fractional Brownian motion (fBm)

Properties of the toy dust density field

Building a toy magnetic field

Magnetic field built from fBm vector potential components

Properties of the toy magnetic field

Physical parameters and observables

Observables derived from simulated Stokes maps

- Spectral indices of $I,\,Q,\,U,\,P$
- Fluctuation ratios of I, P
- Position of PDF maximum of $\mathcal{S}, \, p, \, |\nabla P|/P$
- Correlation S vs. p
- Correlation S vs. $|\nabla P|/P$

Validating the method

Application to Planck data 0.20 0.18 0.16 0.14 0.12 3.0 $[\circ] q$ 0.10 Q β_B 2.5 0.08 2.0 0.06 1.5 0.04 80 0.02 60 d40 0 00 122 20 $l~[^\circ$ 1.6 1.4 **Polaris Flare** σ_n 1.2 1.0 0.8 $\langle n \rangle$ 0.6 0.4 0 σ_B 2.5 2.0 1.5 B1.0 0.5

B spectral index near 2.6, consistent with approaches of Bracco and Vansyngel
Power spectrum tends to steepen with increasing depth

20

40

d

60

80

0.4

0.6

0.8

1.0

1.2

1.4 1.6 0.5

 $\sigma_n / \langle n \rangle = \sigma_B / \langle B \rangle$

1.0

2.0

1.5

1.5

2.0

2.5

 β_B

3.0

2.4

2.6

2.8

 β_n

3.0

3.2

Conclusions

Comparison of Planck polarization maps with MHD simulations

- Decrease of p_{max} with N_{H} well reproduced by simulations
- Anticorrelation between polarization fraction and angle dispersion underlines the role of the magnetic field

Likelihood analysis to constrain statistical properties of ISM B

- Simple, controlled statistics, allowing thorough parameter space exploration
- Points to a magnetic spectral index near 2.6 in the Polaris Flare
- Consistent with an approach using dust polarization C_{ℓ} and a model with a finite number of layers (Boulanger, Bracco, Vansyngel))

Additional slides

Polarization fractions vs. column density

Anti-correlation robust with respect to polarization S/N

Polarization fractions vs. column density

Anti-correlation robust with respect to polarization S/N

Simulated polarized thermal dust emission maps

Anti-correlation p and $N_{\rm H}$ Anti-correlation p and SLower polarization fractions when along the mean field

MHD simulation density PDF

MHD simulation magnetic field PDF

MHD simulation magnetic field power spectrum

MHD simulation density power spectrum

Properties of the dust density field

Log-Density spectral index

Density spectral index

Synthetic density field properties

Log-Density spectral index

Synthetic density field properties

Density spectral index

Log-Density spectral index

Synthetic density field properties

Log-Density spectral index

Synthetic magnetic field spectral index

Magnetic field spectral index

Shifted vector potential spectral index

fBm and exponentiated fBm

fBm

exponentiated fBm

Polarized thermal dust emission essentials

- Grains are aspherical, charged, rotating, and aligned preferentially perpendicularly to the local magnetic field
- Cross sections are proportional to the size, so grains emit more radiation parallel to their long axes
- Polarized thermal emission arises, with an orientation perpendicular to the local magnetic field

See Thiem Hoang's and François Boulanger's talks