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The Planck view of the Galactic magnetic field

Planck intermediate results XIX, XX, XXI, XXII, XXX, XXXII, XXXIII, XXXIV, XXXV, XXXVIII



Polarized emission towards Ophiuchus
Polarization fraction
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Polarization fraction vs. column density

p/�p > 3

Anti-correlation robust with respect to polarization S/N

Ophiuchus



Ophiuchus

« All-sky » fit

Angular dispersion vs. polarization fraction

Planck intermediate results. XIX. 
A&A, 576, 104, 2015



Building simulated polarized emission maps
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« Intrinsic dust polarization parameter »

Opacity at 353 GHz (Planck Collaboration XXXI, 2014)

Dust temperature

p0 = 0.2

Td = 18K

• Ideal MHD with self-gravity 
• An 18 pc subset of a 50 pc simulation cube  
• Converging flows of magnetized warm gas 
• Mean magnetic field along the flows 
• Rotation of the cube, placed at 100 pc 
• Simulated Stokes maps at 353 GHz smoothed at 15’
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See also Diego Falceta-Gonçalves’ talk Hennebelle et al. 2008
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Observed fields

Simulations

Simulations reproduce very well the decrease of pmax 
with NH in the range 1021 to 2x1022 cm-2

Simulations vs. Observations

See also Diego Falceta-Gonçalves’ talk
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« All-sky » fit

Global trend is reproduced, but simulations tend to 
have too high an angular dispersion

Simulations vs. Observations



From reality to observables and back again ?

We wish to constrain the statistical properties of the interstellar B field

Physical fields Observables
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Building a toy dust density field

log-density built as a fractional Brownian motion (fBm)

˜X (k) = A0|k|��
exp [i�(k)]

• Power-law amplitudes
• Random phases

inverse FT
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Properties of the toy dust density field

• Close to log-normal PDF
• Possibly large fluctuations

• Power-law power spectrum
• Spectral index close to that 

of the log-density

NB : for fBm fields �X

hXi < 0.3

n (r) = n0 exp
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Building a toy magnetic field

Magnetic field built from fBm vector potential components

fB�(k) = ✏�µ⌫ikµF0|k|��A/2
exp [i�A⌫ (k)]

Component of the B field in Fourier space

Input spectral index Input Fourier phase mapLevi-Civita tensor

B = r⇥A

B�(r)

fA⌫(k) fBm fields

inverse FT



/ k�1.5

Probability distribution functions Power spectra

Properties of the toy magnetic field

• Divergence-free
• Power-law power spectrum
• Gaussian PDF with zero mean
• Possibility to add a large-scale uniform field

�B = �A � 2



Physical parameters and observables
Physical parameters of the input cubes

Observables derived from simulated Stokes maps
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S vs. p

• Spectral indices of 
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Validating the method

A least-square analysis validates 
the method on simulated maps
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Application to Planck data

Polaris Flare
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• B spectral index near 2.6, consistent with approaches of Bracco and Vansyngel
• Power spectrum tends to steepen with increasing depth



Conclusions

Comparison of Planck polarization maps with MHD simulations

• Simple, controlled statistics, allowing thorough parameter space 
exploration

• Points to a magnetic spectral index near 2.6 in the Polaris Flare

• Consistent with an approach using dust polarization      and a 
model with a finite number of layers (Boulanger, Bracco, 
Vansyngel))

Likelihood analysis to constrain statistical properties of ISM B

• Decrease of pmax with NH well reproduced by simulations 

• Anticorrelation between polarization fraction and angle dispersion 
underlines the role of the magnetic field

C`



Additional slides



Polarization fractions vs. column density

p/�p > 3

Anti-correlation robust with respect to polarization S/N

Ophiuchus



p/�p > 10

Anti-correlation robust with respect to polarization S/N

Ophiuchus

Polarization fractions vs. column density



Simulated polarized thermal dust emission maps
↵ = 0�

↵ = 90�

Total gas column density Polarization fraction Polarization angle dispersion

Anti-correlation p and NH 
Anti-correlation p and  
Lower polarization fractions when along the mean field

S



MHD simulation density PDF



MHD simulation magnetic field PDF



MHD simulation magnetic field power spectrum

« You have no power-law here ! »



MHD simulation density power spectrum

« You have no power-law here ! »



Log-Density spectral index
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Properties of the dust density field



Synthetic density field properties

Log-Density spectral index
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Synthetic density field properties

Log-Density spectral index
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Synthetic density field properties

Log-Density spectral index
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Synthetic magnetic field spectral index

Shifted vector potential spectral index
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fBm and exponentiated fBm
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Polarized thermal dust emission essentials

     

Least likely orientation

Most likely orientation

~B
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~E

See Thiem Hoang’s and François Boulanger’s talks

• Grains are aspherical, charged, rotating, and aligned preferentially perpendicularly to the local magnetic field 

• Cross sections are proportional to the size, so grains emit more radiation parallel to their long axes 

• Polarized thermal emission arises, with an orientation perpendicular to the local magnetic field
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Polarization orientation
Magnetic field orientation


