Dissipation and Intermittency in the magnetised ISM

P. Lesaffre, G. Momferratos,
E. Falgarone, G. Pineau des Forêts
F. Levrier, A. Gusdorf
V. Valdivia, N. Dziourkevitch, B. Godard

Motivation / Outline

- The diffuse ISM contains a lot of complex molecules and they are excited (e.g. bright CO, warm H2, CH⁺).
- Large scale turbulent motions dissipate at small scales, with intense bursts of heating.
- How much of the molecular content can be explained by this localised heating ?
- How can we characterize observationnaly these strongly dissipative structures ?
- 0) Introduction on intermittency

I) 3D simulations to probe their geometry and statisticsII) 2D simulations to start probing their chemistry

0) Intermittency

Intermittency

The variance of dissipation is larger at small scales

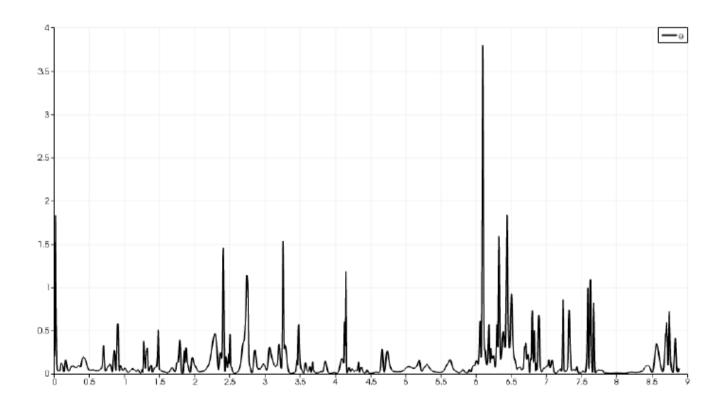


Figure 2.4: Viscous dissipation rate along a fixed line from a 1024^3 incompressible magnetohydrodynamics simulation with initial condition based on the ABC flow. The snapshot shown is at the temporal peak of total (ohmic + viscous) dissipation [G. Momferratos, unpublished].

Intermittency

The variance of dissipation is larger at small scales

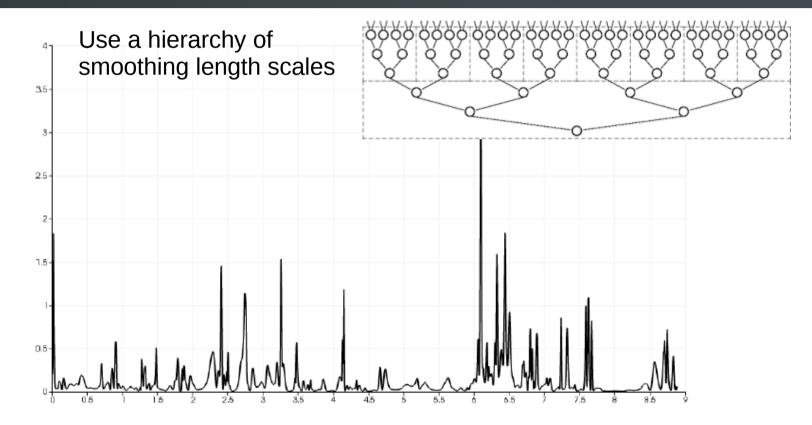
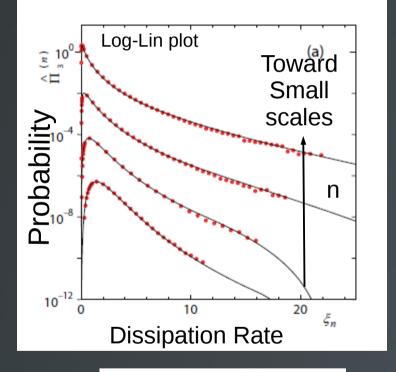


Figure 2.4: Viscous dissipation rate along a fixed line from a 1024^3 incompressible magnetohydrodynamics simulation with initial condition based on the ABC flow. The snapshot shown is at the temporal peak of total (ohmic + viscous) dissipation [G. Momferratos, unpublished].

Intermittency: PDFs

Large deviations are not so rare at small scales

n



Statistics of the Dissipation field Smoothed at various scales

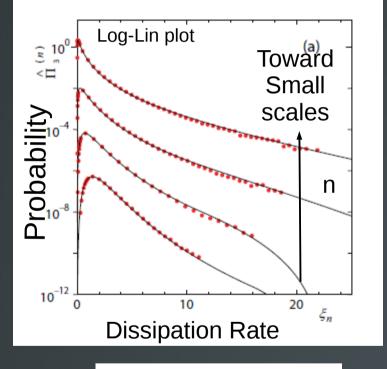
$$\xi_n = \varepsilon_n / \langle\!\langle \varepsilon_n^2 \rangle\!\rangle_{\rm c}^{1/2}$$

Circles: Wind tunnel data by Mouri et al. (2008), Solid line: Model by Arimitsu^2, Mouri (2012)

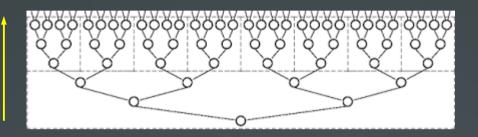
Intermittency: PDFs

Large deviations are not so rare at small scales

n



$$\xi_n = \varepsilon_n / \langle\!\langle \varepsilon_n^2 \rangle\!\rangle_{\rm c}^{1/2}$$



Statistics of the Dissipation field Smoothed at various scales

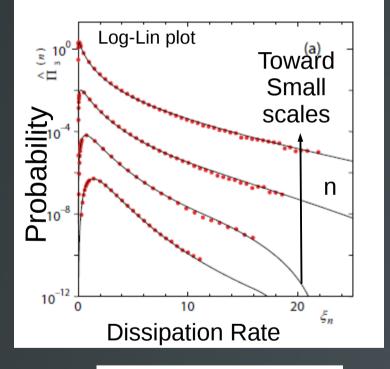
This graph does not show how $<<\epsilon_n^2>>$ varies with smoothing length

Circles: Wind tunnel data by Mouri et al. (2008), Solid line: Model by Arimitsu^2, Mouri (2012)

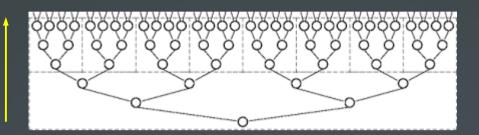
Intermittency: PDFs

Large deviations are not so rare at small scales

n



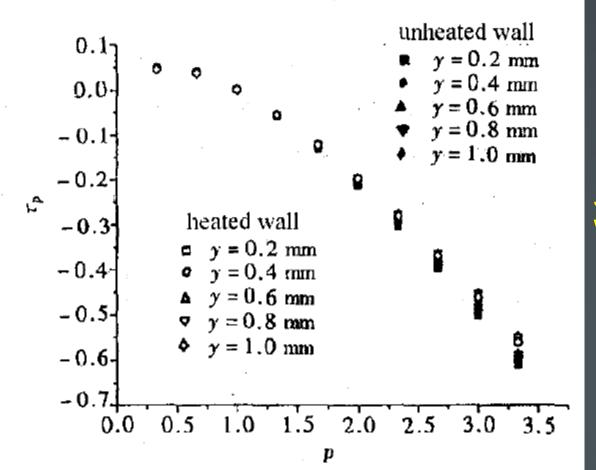
$$\xi_n = \varepsilon_n / \langle\!\langle \varepsilon_n^2 \rangle\!\rangle_{\rm c}^{1/2}$$



Messing up with the branches does not change the statistics at any level of smoothing => These statistics are sensitive to topology only to a certain extent, and they miss space/time delays.

Circles: Wind tunnel data by Mouri et al. (2008), Solid line: Model by Arimitsu^2, Mouri (2012)

Intermittency: exponents of structure functions
Increments have various scalings with distance when put to various powers.

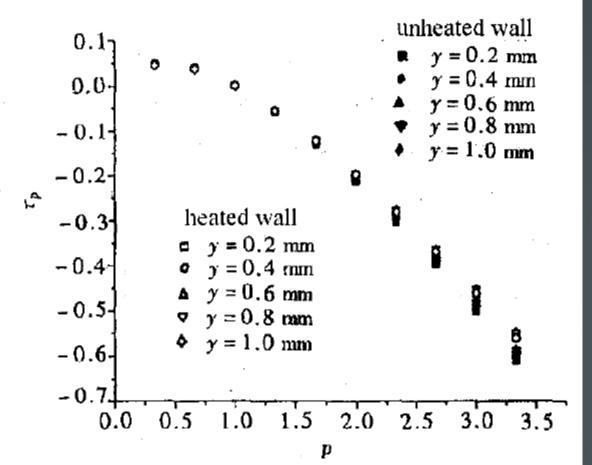


Dissipation exponents:

$$\langle \varepsilon_r^p \rangle \propto \langle \varepsilon \rangle^p \left(\frac{r}{L_i} \right)^{\tau_p}$$

Jiang, Wang, Shu, Wang (2002) Wind tunnel experiment

Intermittency: exponents of structure functions
Increments have various scalings with distance when put to various powers.



Dissipation exponents:

$$\langle \varepsilon_r^p \rangle \propto \langle \varepsilon \rangle^p \left(\frac{r}{L_i} \right)^{\tau_p}$$

Jiang, Wang, Shu, Wang (2002) Wind tunnel experiment

Note: velocity structure exponents:

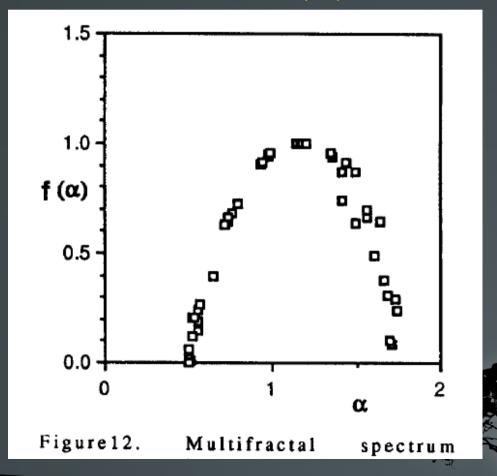
 $\zeta(m) = m/3 + \tau(m/3)$

Intermittency: multifractal formalism

Dissipation scales as

$$\varepsilon_n/\varepsilon = (\ell_n/\ell_0)^{\alpha-1}$$

on fractal sets of dimension $f(\alpha)$

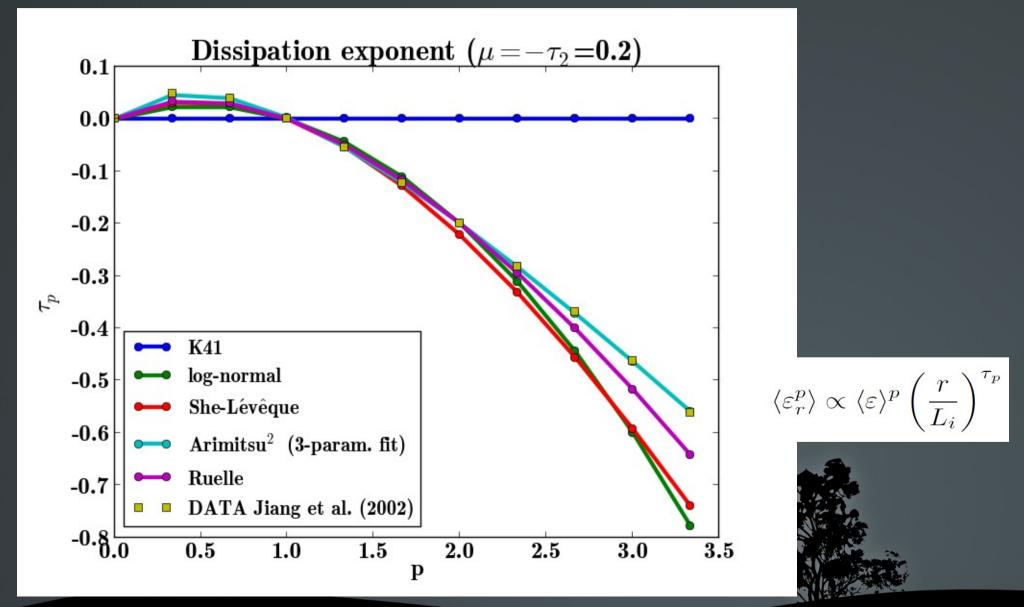


Meneveau and Srivinasan (1987) Wake of a cylinder

Intermittency: Various Models

- Log-Normal: Kolmogorov (1962), Obukhov (1962)
- She-Lévêque (generalised Log-Poisson)
- Arimitsu & Arimitsu (2000, etc...)
- Multiplicative cascade and Beta-model (Frish, 1995)
- Hierarchical statistical mechanics (Ruelle 2012)
- Stochastic equations for vorticity (Zybin et al. 2007)

Intermittency: Various Models



Intermittency: Various aspects are equivalent

■ PDFs ↔ Exponents ↔ Multifractals

(Large deviation theory, steepest descent argument, moments generating function, ...)

- But equivalence requires full knowledge of the scaling coefficients: each vision focuses on one aspect of intermittency.
- Notes:
 - None of these visions strongly constrains the shape of the dissipation structures.
 - They are blind to time & space lags.

I) 3D Simulations with controled dissipation

Characteristics of the ISM

- Diffuse n_H ~ 30/cm³, Molecular n_H ~ 200/cm³
- <u²>~<b²/ρ> (Alfvénic Mach number ~ 1)
- Sonic Mach number ~ 4
- **Decaying MHD turbulence simulations:**
- Incompressible with <u²>~<b²/ρ>

[code ANK]

Compressible *isothermal* with Mach ~ 4 [DUMSES]

(Resolution: 512^3 and 1020^3 Mean B = 0)

Dissipation in the ISM

- Viscous friction: Re=LU/v ~ 2.10^7
- Resistivity: $\text{Re}_{\text{m}} = LU/\eta \sim 2.10^{17}$
- Ambipolar diffusion: $\text{Re}_a = L/Ut_a \sim 10^2 10^3$
- $L \sim 3 10 \text{ pc} >> l_a >> l_v >> l_\eta$

Dissipation in our simulations

- Viscous friction: Re=LU/v ~ 2.10^7 10³
- Resistivity: $\text{Re}_{m} = LU/\eta \sim 2.10^{17}$ 10³
- Ambipolar diffusion: $\operatorname{Re}_{a} = L/Ut_{a} \sim 10^{2} 10^{3}$
- Plus: some dissipation due to the numerical scheme with l_{num}~L/512 or L/1020

•
$$L >> l_a >> l_v \sim l_\eta > l_{num}$$

(Warning: $Prm=\nu/\eta=1$...)

Note: no Ambipolar Diffusion (A.D.) in our compressible runs yet.

Recover the Numerical Dissipation

- Method 0 (bench): use shock solution and fit it
- We designed several general methods:

Method 1

Consider the evolution equation of kinetic and magnetic energy: $\partial_t(\frac{1}{2}\rho u^2 + \frac{1}{2}B^2) + \nabla \cdot \mathcal{F}_1 = -u \cdot \nabla(p) - q$ where q is the total irreversible heating and where the flux \mathcal{F}_1 reads: $\mathcal{F}_1 = \mathbf{u}(\frac{1}{2}\rho u^2) + (B \times u) \times B + \nu \sigma \cdot u + \eta J \times B.$

Positive, more or less accurate (60% overestimate in worst case)

Method 2

$$\partial_t (\frac{1}{2}\rho u^2 + \frac{1}{2}B^2 + p\log\rho) + \nabla \cdot \mathcal{F}_2 = -q$$

where

 $\mathcal{F}_2 = \mathcal{F}_1 + \mathbf{u}p(\log \rho + 1).$

Asymetric, negative

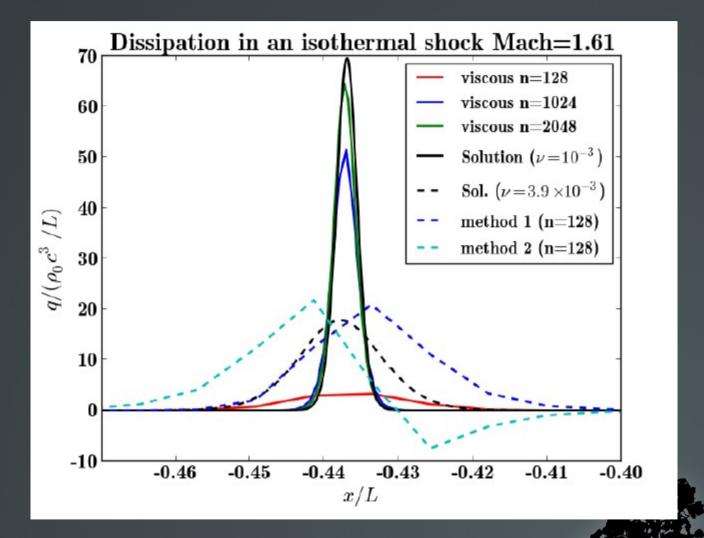
Method 3

$$\begin{array}{l} \partial_t (\frac{1}{2}\rho u^2 + \frac{1}{2}B^2) + \boldsymbol{\nabla}.\boldsymbol{\mathcal{F}}_3 = p\boldsymbol{\nabla}.\boldsymbol{u} - q\\ \text{where} \end{array}$$

$$\mathcal{F}_3 = \mathcal{F}_1 + \mathrm{u}p.$$

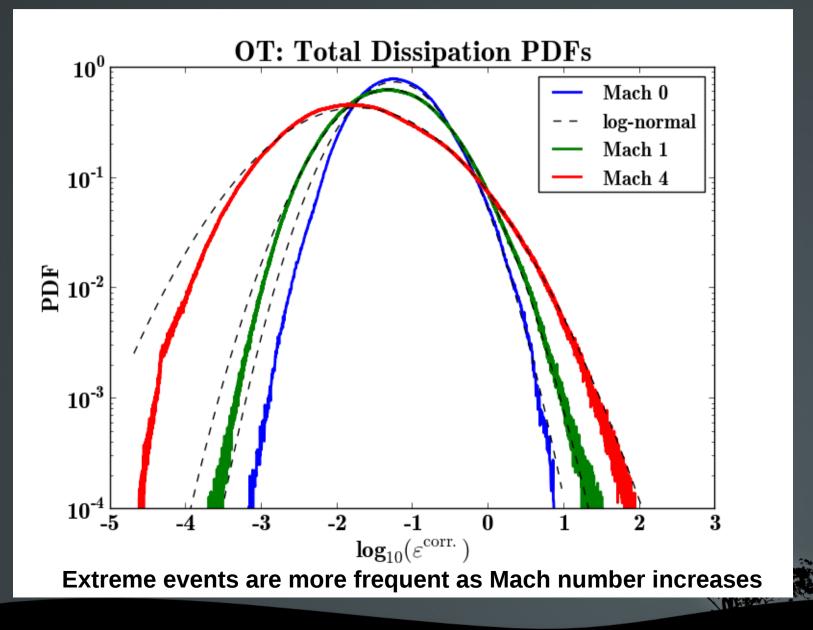
naccurate 🔌

Recover the Numerical Dissipation

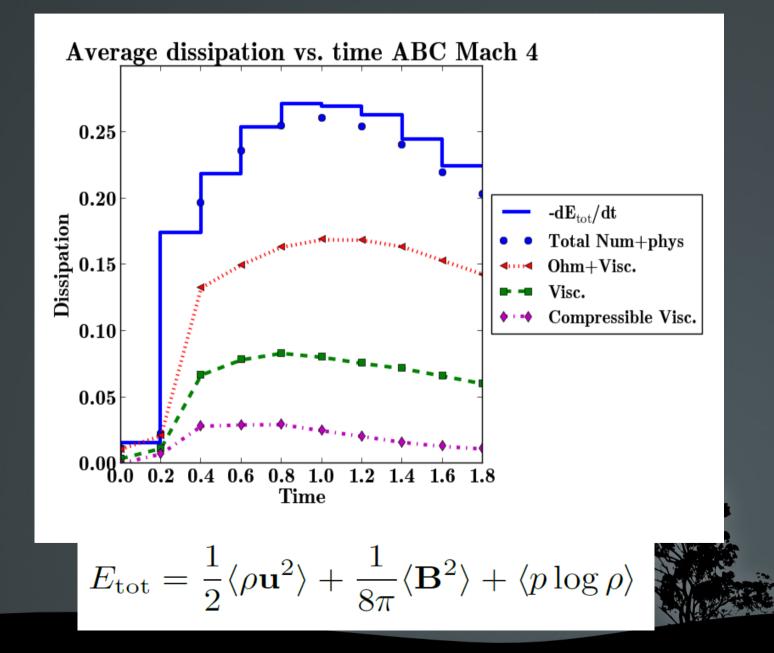


=> We get the total dissipation more or less correct, but we are aware that the shock width is overestimated

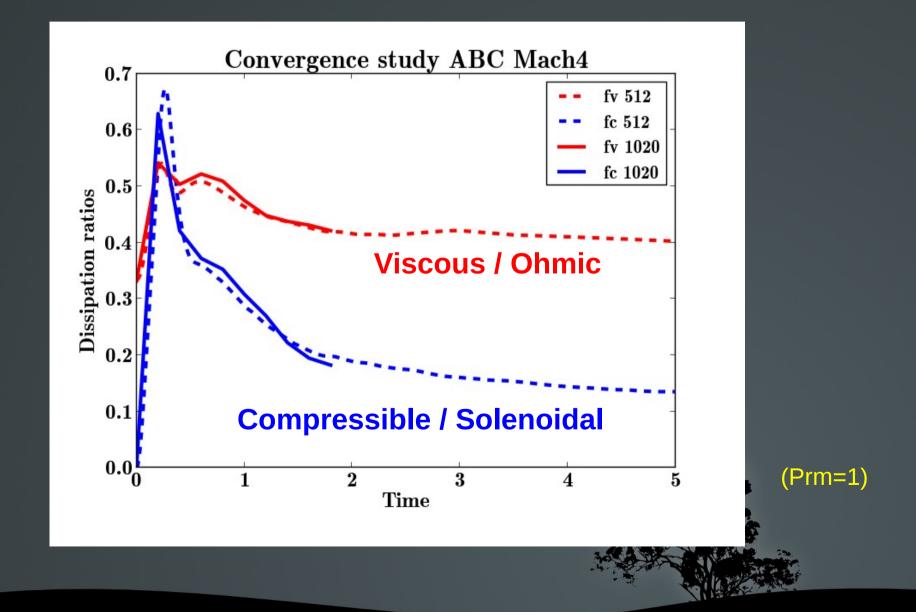
Log-Normal dissipation PDF (not Tsallis...)



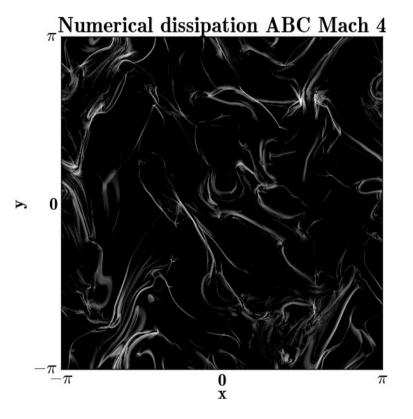
Dissipation vs. time



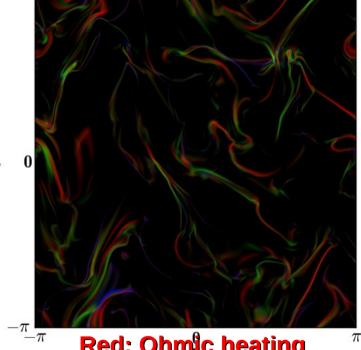
Convergence



Dissipation maps



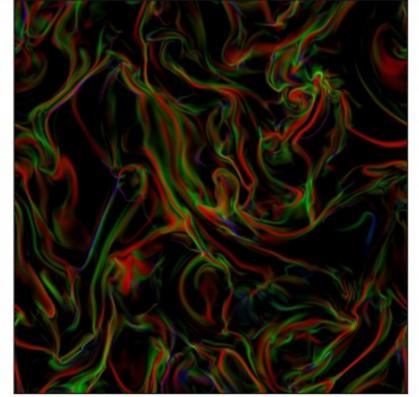
 π Physical dissipation ABC Mach 4



Red: Ohmic heating π **Blue: 4/3 v div(u)²** Green: v curl(u)²

Dissipation nature Compressible MHD (Mach 4, ABC)

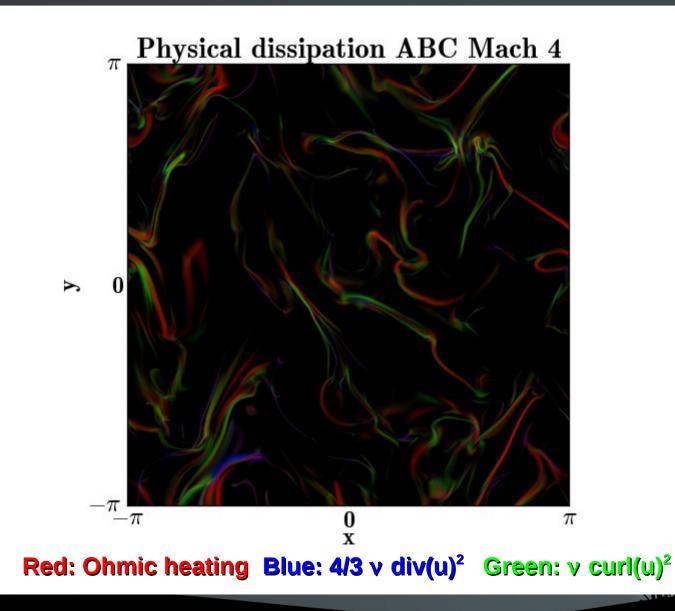
Heating nature in decaying MHD turbulence



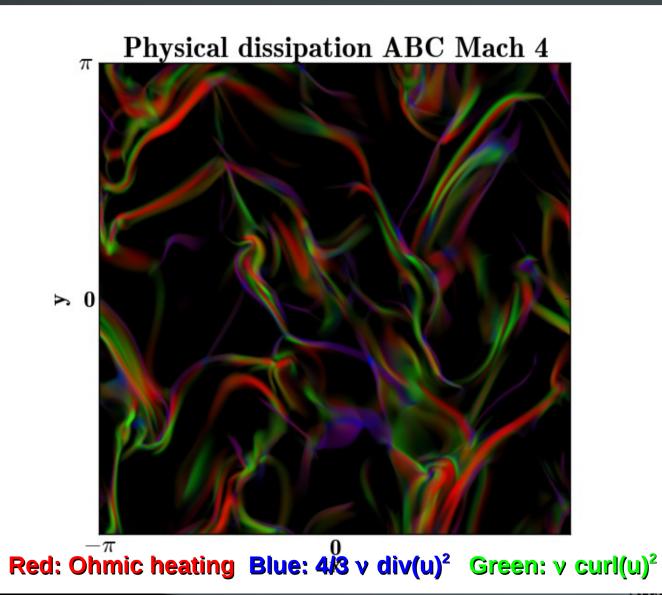
Red: Ohmic, Green: Viscous shear, Blue: Viscous compression

Red: Ohmic heating Blue: $4/3 \vee div(u)^2$ Green: $\vee curl(u)^2$

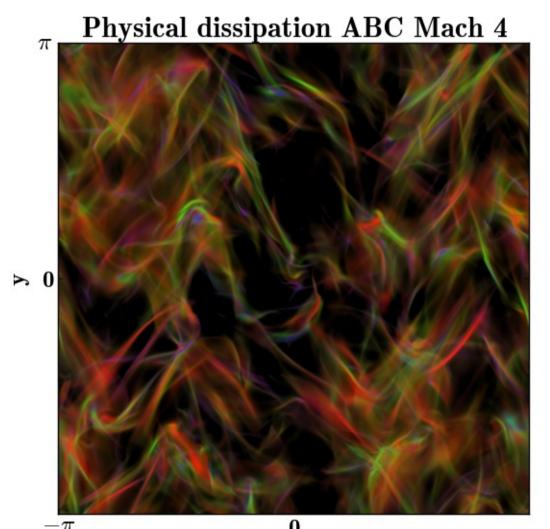
Dissipation in a one pixel Slice



Dissipation integrated over Lbox/64



Dissipation integrated over full Lbox



Red: Ohmic heating Blue: $4/3 \vee \text{div}(u)^2$ Green: $\vee \text{curl}(u)^2$

Integrated Observables

<u>Centroid velocity:</u> first moment of the l.o.s. velocity

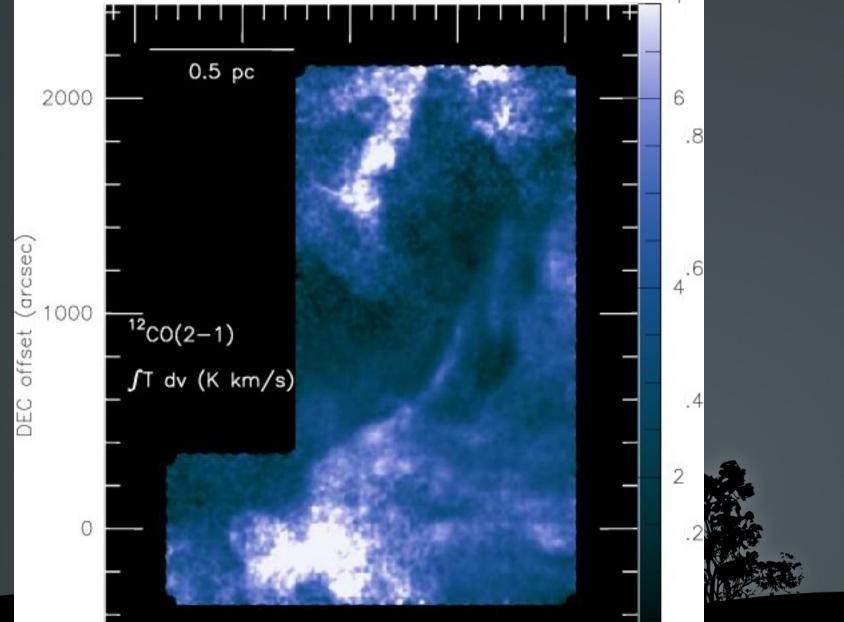
$$\mathrm{CV}(x,y) = \int_0^L u_z(x,y,z) \ dz$$

Assuming that total dissipation powers the line (or that a chemical tracer appears right where there is heating):

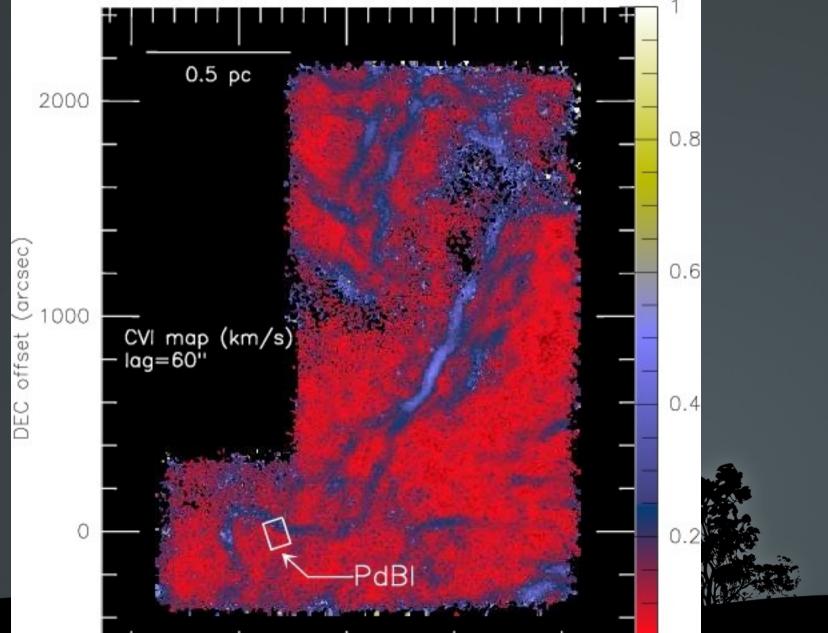
$$\operatorname{CV}_w(x,y) = \frac{1}{\langle \varepsilon \rangle} \int_0^L \varepsilon(x,y,z) \ u_z(x,y,z) \ dz$$

Other variables: Stokes parameters of the polarization (Q, U, I, P)... (assuming grains are perfectly aligned to local B)

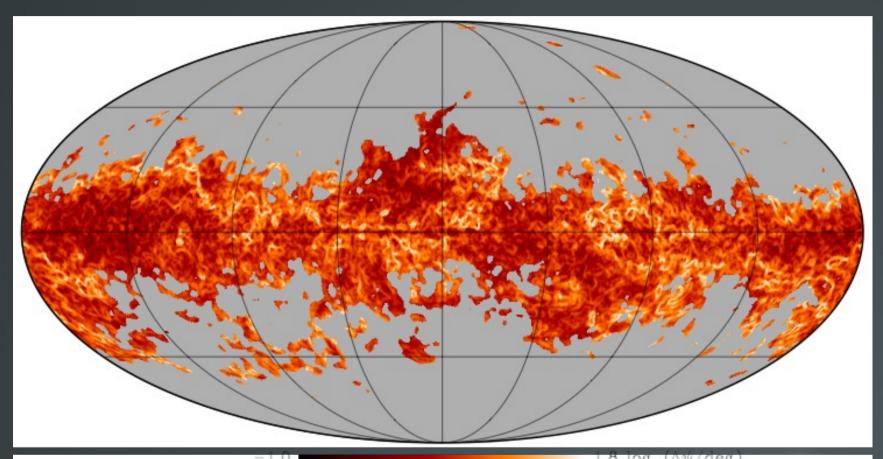
Integrated Observables Line intensities in Polaris flare



Integrated Observables Centroid Velocity Increments



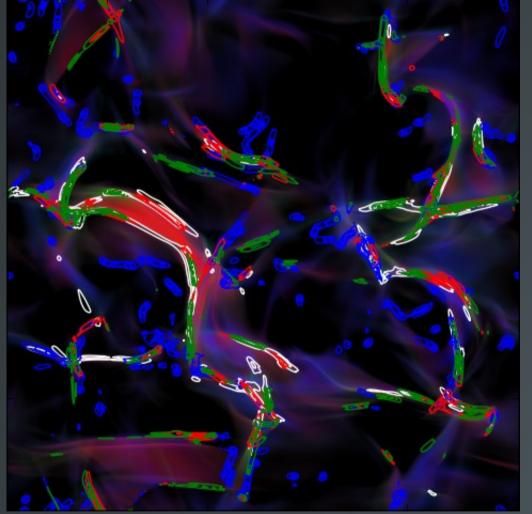
Increments of Polarisation angles



1° resolution 30' lag

$$\Delta \psi^2(l) = rac{1}{N} \sum_{i=1}^N \left[\psi\left(\mathbf{r}
ight) - \psi\left(\mathbf{r} + \mathbf{l}_i
ight)
ight]^2$$

Observable increments vs. dissipation Lbox/2



• <u>Background</u>: Dissipation rates Ohmic Viscous AD

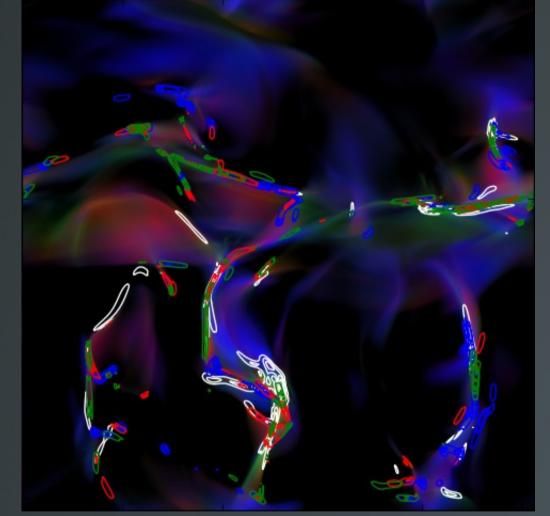
• <u>Contours:</u> Increments of

integrated observables:

- LOS velocity (white)
- Stokes Q (green)
- Stokes U (red)
- POS polarisation angle (blue)

<u>NOTE:</u> increment of polarisation angle (blue contours) are less correlated to dissipation. Better use Q,U.

Observable increments vs. dissipation Lbox / 8



• <u>Background</u>: Dissipation rates Ohmic Viscous AD

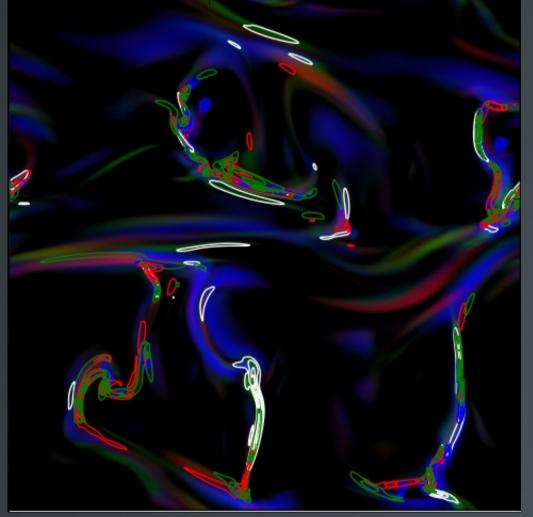
• <u>Contours:</u> Increments of

integrated observables:

- LOS velocity (white)
- Stokes Q (green)
- Stokes U (red)
- POS polarisation angle (blue)

<u>NOTE:</u> increment of polarisation angle (blue contours) are less correlated to dissipation. Better use Q,U.

Observable increments vs. dissipation Lbox / 64



• <u>Background</u>: Dissipation rates Ohmic Viscous AD

• <u>Contours:</u> Increments of

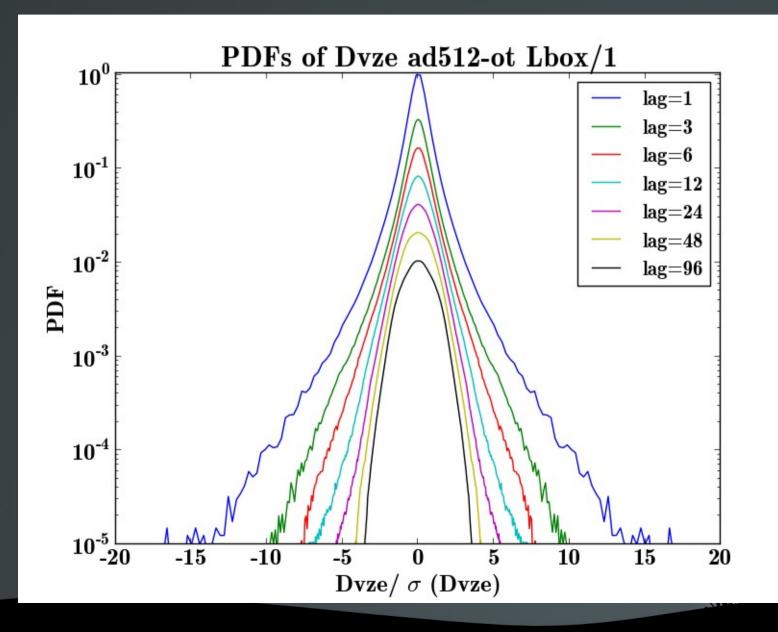
integrated observables:

- LOS velocity (white)
- Stokes Q (green)
- Stokes U (red)
- POS polarisation angle (blue)

<u>NOTE:</u> different observables trace different parts of the dissipative structures

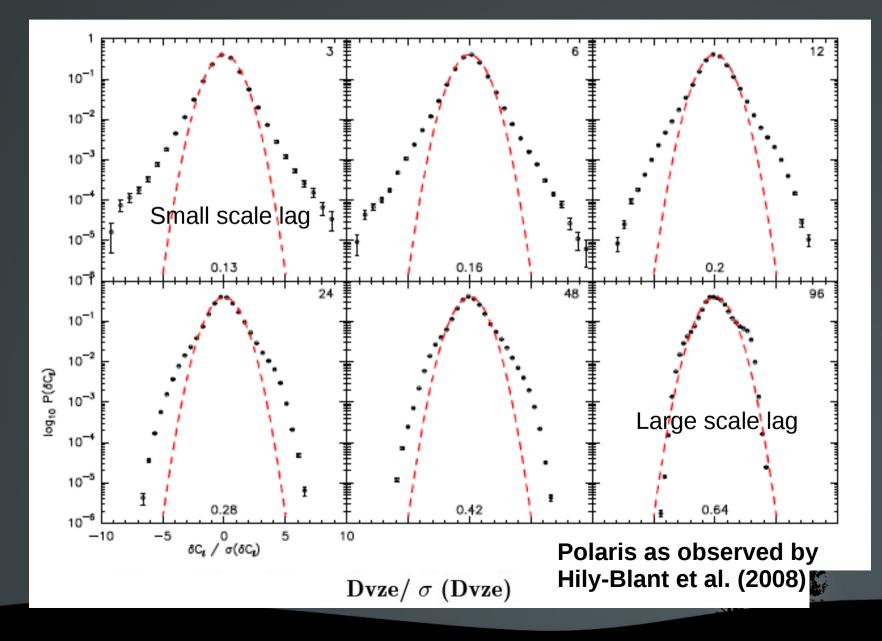
PDFs of Velocity increments

From Gaussian to exponential wings → signature of intermittency



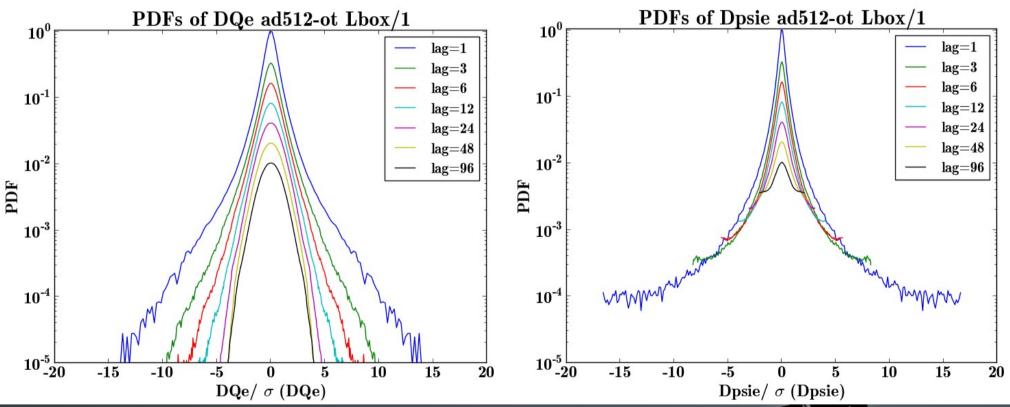
PDFs of Velocity increments

From Gaussian to exponential wings \rightarrow signature of intermittency

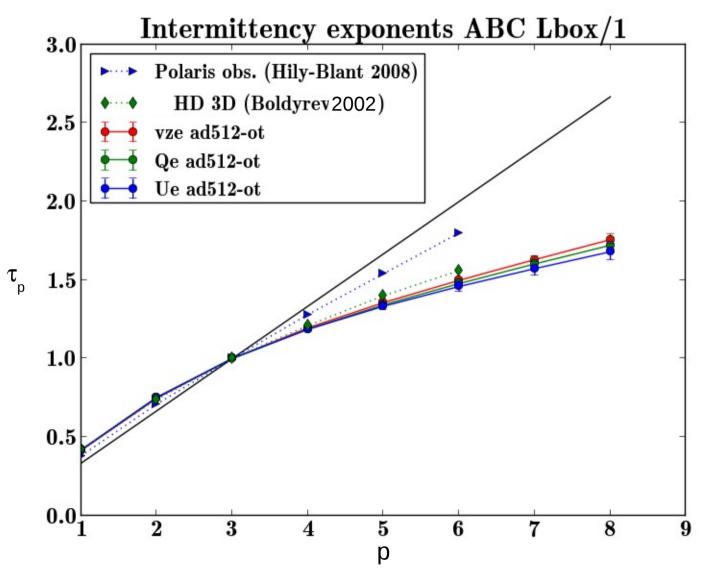


PDFs of Q or psi increments

Stokes Q or U characterise better intermittency than psi

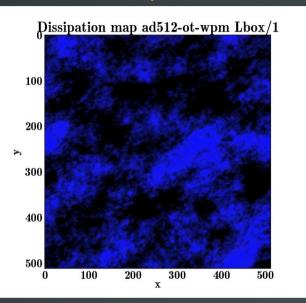


Intermittency exponents

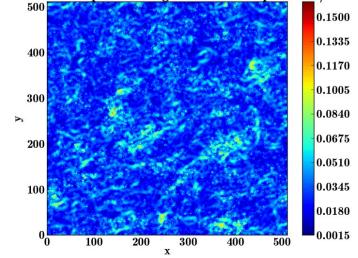


Mix the phases and everything disappears...

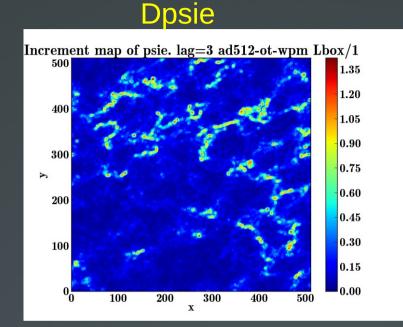
Dissipation

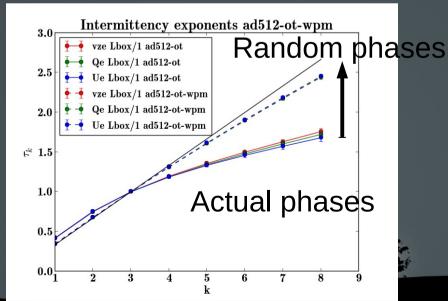


Increment map of vze. lag=3 ad512-ot-wpm Lbox/1



Dvze





Conclusions I

We ran 3D MHD simulations with dissipation in the conditions of the ISM except v and η are hugely enhanced (and v= η ...).

- We can recover the scheme's dissipation.
- Dissipative structures are single flavoured sheets,
 coherent, with remarkable scalings (cf. next talk)
- Increment maps and dissipative structures are strongly linked => observable signatures.

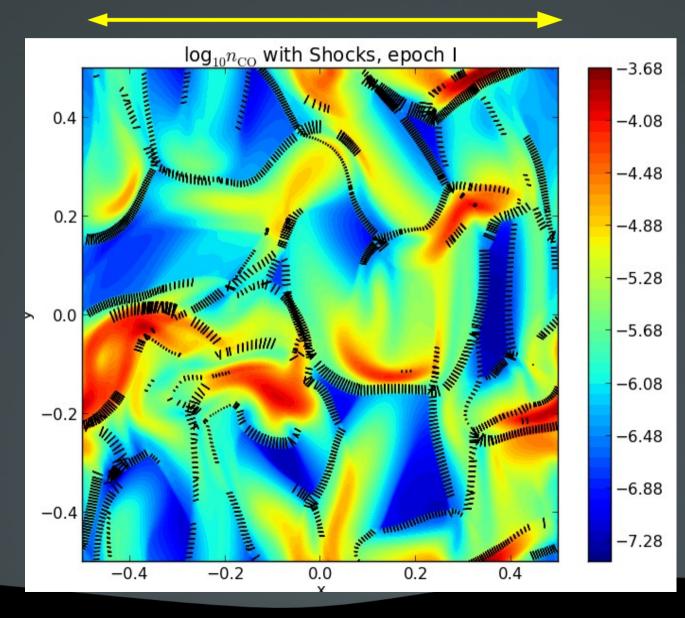
II) 2D Simulations with chemistry

Chemical Signatures CHEMSES = DUMSES + Paris-Durham

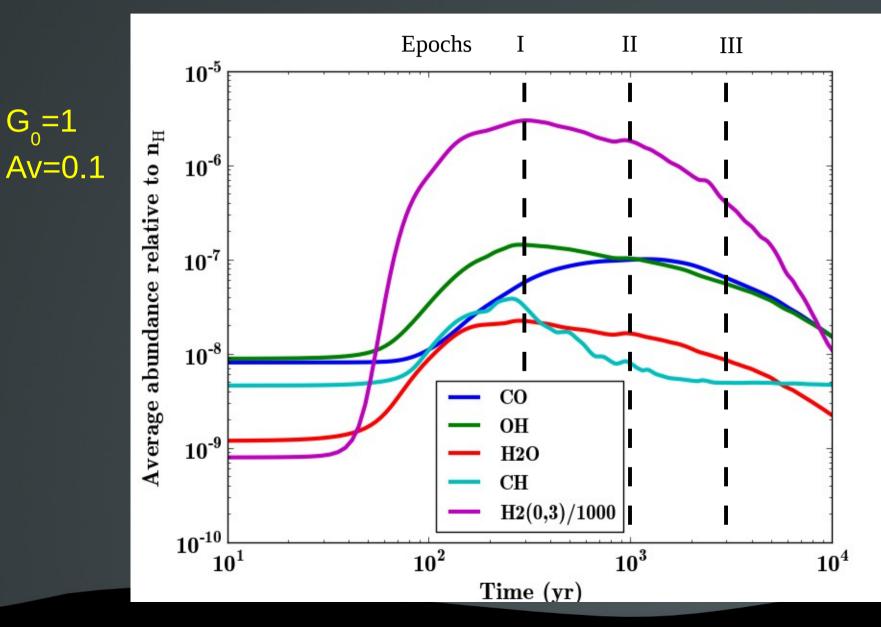
VERY SMALL domain <u>ACTUAL</u> viscous diffusion

32 species, 7 H_2 levels 1024² pixels, decaying 2D turbulence U_{rms} ~2 km/s (way above average, But think intermittency)

Homogeneous Irradiation: G0=1, Av=0.1 => CO should not survive



Molecules enhanced by dissipation of 2D turbulence



<u>BUT</u> CH⁺ and SH⁺ molecules *require* **neutral-ion drift due to B field.**

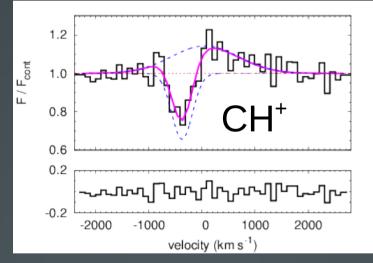
(see Godard et al. 2009)

(4640k

(986)

 $\begin{array}{c} \text{In our galaxy:} \\ 3.00 \\ 2.50 \\ 2.50 \\ 1.50 \\ 1.50 \\ 1.50 \\ 1.50 \\ 0.50 \\ 0.50 \\ 0.00 \\ -60 \\ 0 \\ 60 \\ 120 \\ 180 \end{array}$

In a galaxy at z=2.2:



Herschel obs. Godard et al (2012)

S

 $CH^+ + H$

+ H

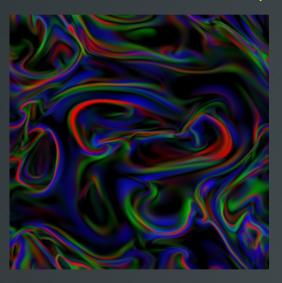
(Easy ??)

Conclusions II

- Many molecules are sensitive to dissipation (amongst others, CO and H2)
- This chemistry needs extreme spatial resolution, and is absent from current large scale simulations.
- For some molecules (CH+, SH+), B field and ambipolar diffusion heating is needed (numerical challenge).

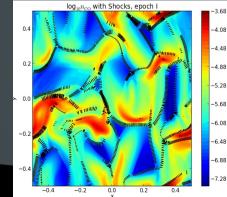
The cunning plan...

Intermittent statistics of the dissipation

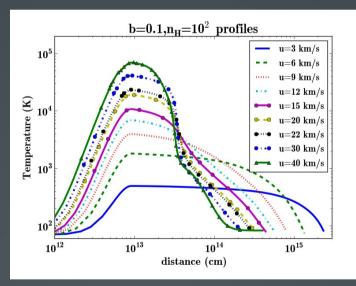


G. Momferratos

Dissipation strength => Molecules Formation + excitation

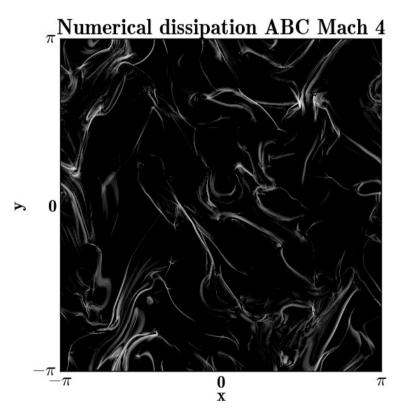


Molecular yields from Shocks (for example)

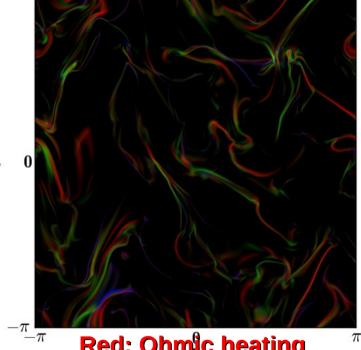


Thanks !

Dissipation maps



 π Physical dissipation ABC Mach 4



Red: Ohmic heating π **Blue: 4/3 v div(u)²** Green: v curl(u)²

Density

