Numerical Simulations of Magnetic Reconnection in Solar Wind Collisional vs Collisionless Regimes

Grzegorz Kowal

Universidade Cruzeiro do Sul Universidade de São Paulo São Paulo, Brazil

In collaboration with Diego Falceta-Gonçalves Alex Lazarian Ethan Vishniac

Magnetic Fields in the Universe V – Cargèse, France, Oct. 6th, 2015

Solar Wind Characteristics

From Bruno & Carbone (2013):

Length	Slow wind	Fast wind
Debye	$\sim 4 \text{ m}$	$\sim 15~{\rm m}$
proton gyroradius	\sim 130 km	$\sim 260~{\rm km}$
electron gyroradius	$\sim 2~{\rm km}$	$\sim 1.3~{\rm km}$
distance between 2 proton collisions	$\sim 1.2~{\rm AU}$	$\sim 40~{\rm AU}$

$R_L < \lambda_{mfp}$ - collisionless plasma

Speed	Slow wind	Fast wind	
Alfvén ion sound proton thermal electron thermal	$\begin{array}{l} \sim \ 30 \ {\rm km \ s^{-1}} \\ \sim \ 60 \ {\rm km \ s^{-1}} \\ \sim \ 35 \ {\rm km \ s^{-1}} \\ \sim \ 3000 \ {\rm km \ s^{-1}} \end{array}$	$\begin{array}{c} \sim \ 60 \ {\rm km \ s^{-1}} \\ \sim \ 60 \ {\rm km \ s^{-1}} \\ \sim \ 70 \ {\rm km \ s^{-1}} \\ \sim \ 2000 \ {\rm km \ s^{-1}} \end{array}$	β ~ 1

Fluid Description of Collisionless Plasma

Chew-Goldberger-Law (1956) – one fluid hydromagnetic equations in the absence of particle collisions

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) &= 0 \qquad \frac{\partial \vec{B}}{\partial t} - \nabla \times \left(\vec{u} \times \vec{B} \right) = 0 \\ \rho \frac{\partial \vec{u}}{\partial t} + \nabla \left(p_{\perp} + \frac{B^2}{2\mu_0} \right) - \nabla \cdot \left[(1 - \alpha) \frac{\vec{B} \vec{B}}{\mu_0} \right] = 0 \\ \alpha &= \left(p_{\parallel} - p_{\perp} \right) \mu_0 / B^2 \\ \frac{d}{dt} \left(\frac{p_{\parallel} B^{\gamma_{\parallel} - 1}}{\rho^{\gamma_{\parallel}}} \right) = 0 \end{aligned}$$

 $\frac{d}{dt} \left(\frac{p_{\perp}}{\rho B^{\gamma_{\perp} - 1}} \right) = 0$

Pressure component evolution

Solar Wind Temperature Anisotropies

Observations of Temperature Anisotropy by Bale et al. (2009)

Fitting of the instability limits for protons done by Hellinger et al (2006)

Instability	а	b	β_0
Proton cyclotron instability	0.43	0.42	-0.0004
Mirror instability	0.77	0.76	-0.016
Parallel fire hose	-0.47	0.53	0.59
Oblique fire hose	-1.4	1.0	-0.11

Turbulence in Collisionless Plasma

Kowal, Falceta-Gonçalves & Lazarian (2011)

Turbulence statistics affected by kinetic instabilities

Sweet-Parker model (1957)

$$V_{inflow} = \eta / \lambda$$

Ohmic diffusion

$$V_{inflow} L = V_{outflow} \lambda$$

V

Mass conservation

$$V_{outflow} = V_A$$

Free outflow

Reconnection Rate:

$$V_{inflow} = V_A \left(\frac{\lambda}{L}\right) = V_A \left(\frac{L V_A}{\eta}\right)^{-1/2} = V_A S_L^{-1/2}$$

Lundquist Number

PROBLEM: S_L very large for astrophysical objects! Solar Corona S₁ ~ 10^{12} - 10^{14} , ISM S₁ ~ 10^{15} - 10^{20}

Reconnection with Turbulence (LV99)

Dependence on Resistivity

Numerical Setup

- initial Harris current sheet setup

$$B_x(x, y) = B_0 \tanh(y/h), B_y(x, y) = 0$$

- B₀=1, B_z=0.1
- initially firehose unstable sound speeds $a_{\parallel} = 1.5$, $a_{\perp} = 1.0$
- initial random velocity perturbation with amplitude < 0.1
- periodic box

Current Density

Magnetic Line Deformation

Global Reconnection Rate using Q-factor

Pariat & Démoulin (2012): Squashing degree, Q - the field-line invariant quantifying the deformation of elementary flux tubes.

> Collisional: $\overline{Q} = 5 \cdot 10^4$ Collisionless: $\overline{Q} = 10^6$

Kowal et al. (in prep.)

Conclusions

- In the collisionless regime the presence of pressure anisotropy allows for the development of instabilities, such as firehose
- In the current sheet we expect the drop of magnetic field strength, allowing for the firehose instability condition β_{\parallel} - β_{\perp} >2 to be fulfilled
- The instability directly affects the topology of magnetic field creating helical loop-like deformations in the current sheet, which effectively increase the reconnection rate, as we have shown using the Q-factor