The Importance of the Magnetic Field from an SMA-CSO-Combined Sample of Star-Forming Regions

Patrick Koch (ASIAA)

with

Ya-Wen Tang, Paul T.P. Ho

+ SMA pol legacy team: Qizhou Zhang, Josep Miquel Girart, Hua-bai Li, Ram Rao

Magnetic Fields in the Universe V, Cargèse; October 7, 2015

Magnetic Field Observational Techniques

main difficulty: weak signal, ~ few % of Stokes I

(Chapman et al. 2011)

^t Zeeman splitting: needs strong enough line emission, can get field strength, typically isolated and local (e.g., Crutcher 2012, Crutcher+ 2009)

synchrotron radiation: needs relativistic electrons, typically not observed (but: HH80-81 jet, Carrasco-Gonzalez+ 2010)

* absorption of background star light by dust (polarization in optical / NIR) only morphology, no field strength

thermal dust emission
(polarization in mm / submm bands)
only morphology, no field strength

Dust Polarization Mechanism

 $n_{H_2} \sim 10^{4-7} (cm^{-3})$ T ~ 10 (K)

paramagnetic, elongated, rotating... (e.g. Hildebrand 1988, Lazarian 2007...)

Polarization

- individual dust particle: dipole
- in submm: linear polarization from thermal dust emission
- coherent alignment mechanism: B field is one possibility
- mechanism provides only projected field orientation/morphology
- need something more to derive field strength

to start with: Larger Scale Interstellar Medium by Planck

Taurus molecular cloud complex; dust continuum at 350 GHz 15' resolution

(Planck XXXII, 2014; poster by Andrea Bracco)

Planck: Interstellar Medium

(Planck XXXII, 2014)

magnetic field vs structure:

- field tends to be aligned with ridges in diffuse ISM
- alignment progressively changes
 as column density increases

- interpretation:

magnetic field is guiding material, possibly significant level of turbulence organizing material parallel to magnetic field

- question:

how does the role of the magnetic field evolve towards smaller scales?

utilize dust polarization
 observations on smaller scales
 with the SMA, CSO, JCMT, (ALMA)

Magnetic Field Observations on Smaller Scales

SMA: High-Resolution Cores in Star-Forming Regions

Key Observable: angle δ

Increasing Sample Size: SMA Polarization Legacy Program and CSO archival data

* about 20 additional sources (new or deeper integration, dedicated SMA legacy program, Zhang + SMA pol legacy team, 2014)

total: about 30 sources in polarization with the SMA

* high-mass sites with density > 10⁵ cm⁻³ on scales 0.1 to 0.01 pc, resolutions around 1" - 3"

* additionally: CSO archival data (about 20 sources), covering scales of ~ 1 pc

* total sample: 50 sources (low- and high-mass star forming regions)

SMA Polarization Legacy Program + CSO Archival data: Magnetic Field vs Dust Continuum Structure

- prevailing field orientation: roughly parallel to source minor axis (not bimodal)
- opposite to Planck result:

field tends to be aligned with ridges in diffuse ISM

- intermediate scales: expect results from BLASTpol (poster by Laura Fissel)
- magnetic field very likely plays different roles as a function of scales

What is δ ?

(Koch, Tang & Ho, 2013)

project n_B into orthonormal system (normal, tangential to contour)

$$\rho\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) \mathbf{v} = -\nabla P - \rho \nabla \phi + \frac{1}{4\pi} \frac{1}{R} B^2 \mathbf{n}_B$$

$$\rho\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) \mathbf{v} = -\nabla P - \rho \nabla \phi + \sin|\delta| \frac{1}{4\pi} \frac{1}{R} B^2 \mathbf{n}_{\rho} + \sin|\alpha| \frac{1}{4\pi} \frac{1}{R} B^2 \mathbf{t}_{\rho}$$

- δ measures alignment

- fraction of field tension force oriented along gradient

What can we learn from δ ?

Magnetic Field Strength Map Field-to-Gravity Force Ratio Σ_B

(Koch, Tang & Ho, 2012a,b;2013)

δ across a Sample of 50 sources (SMA+CSO): Σ_B

average <|δ|> is systematically different across sample
 <|δ|> is typically small for sources with magnetic field parallel to source minor axis, <|δ|> grows for sources with field parallel to major axis
 <Σ_B> grows systematically with <|δ|> with a transition across 1

(Koch+ SMA pol legacy, 2014)

δ across a Sample of 50 sources (SMA+CSO): mass-to-flux ratio

(Koch+ SMA pol legacy, 2014)

Conclusions

- observations: * δ is a key observable, discriminating between different types of source - magnetic field configurations; seen in SMA, CSO, JCMT (and BIMA / CARMA) data

> * prevailing field orientation is parallel to source minor axes; Planck observations of larger-scale ISM: opposite trend

* δ is a tracer of the role of the magnetic field (sub-, supercritical; star formation efficiency)

* sample of 50 sources: δ and Σ_B show clear correlation; i.e., the larger δ , the more the field dominates gravity

- methodology:

basic idea: observed morphology reflects geometrical imprint of combined forces. This leads to:

> * force ratio Σ_{B} (depends on angles only) * local magnetic field strength B