

 faculty of mathematics and natural sciences kapteyn astronomical institute

AST(RON

Netherlands Institute for Radio Astronomy

Filamentary structures in LOFAR observations of the interstellar medium

Vibor Jelić*

*on behalf of the LOFAR-EoR team

LOFAR: Low Frequency Array

van Haarlem et al., 2013

• LOFAR-HBA (6-8h) observations

- 115 175 MHz, 0.2 MHz resolution
- 5 deg x 5 deg images, 3 arcmin resolution

Rotation Measure synthesis

Brentjens & de Bruyn 2008

Faraday rotation ~ $\phi \lambda^2$

 with radio telescope we observe emission in Stokes I,Q,U,V at different frequencies

 $\mathsf{P}(\lambda^2) = \mathsf{Q}(\lambda^2) + \mathsf{iU}(\lambda^2)$

- preform transformation from λ^2 to Faraday depth ϕ (RM synthesis)

$$F(\Phi) = \frac{1}{W(\lambda^2)} \int_{-\infty}^{+\infty} P(\lambda^2) e^{-i2\Phi\lambda^2} d\lambda^2$$

Rotation Measure Spread Function

NCP field

3C196 field

Jelic et al., 2015, A&A

3C196 field: constrains on B_{II}

magnetic field reversal(s)

PULSAR 434 ms; +2.7 rad/m^{2;} 11.3 pc cm⁻³ (J. Hessels & V. Kondratiev)

$\langle B_{\parallel} \rangle$	_	RM [rad m ⁻²]				
[μG]	0.8	312 D	М	[pc ci	m ⁻³]	
$\langle B_{\parallel} angle$	=	0.3	±	0.1	μG	

$$\sigma_{\langle B_{\parallel} \rangle} = \sqrt{\left(\frac{\sigma_{\langle \text{RM} \rangle}}{0.81 \langle n_e \rangle L}\right)^2 + \left(\frac{\langle \text{RM} \rangle \sigma_{\langle n_e \rangle}}{0.81 \langle n_e \rangle^2 L}\right)^2}$$
$$\sigma_{\langle B_{\parallel} \rangle} \simeq 0.2 \ \mu\text{G}$$

3C196 field: constrains on the filament

- the lack of emission in total intensity, an upper limit to the thermal free-free emission, $T_{\rm ff} < 0.2$ K
- T_e = 8000K and dl=1pc —> n_e < 1 cm⁻³
- thickness in Faraday depth of 1 rad m⁻²
 B₁₁ > 1.2 microG
- assuming equipartition between magnetic and thermal energy B_{tot} < 6.5 microG

3C196 field: a possible model

Jelic et al., 2015, A&A

Jelic et al., 2015, A&A

3.0

2.5

2.0¹⁻¹SMS

1.5 LS

1.0 Ĕ

0.5

0.0

field

3C196 field: WSRT 350 MHz observations

3C196 field: Planck dust polarization maps

university of groningen

Vibor Jelić

 faculty of mathematics and natural sciences kapteyn astronomical institute

AST(RON

Netherlands Institute for Radio Astronomy

- rich morphology of polarized emission detected with LOFAR (115 175 MHZ), with the brightness temperature of a few K
- each field has different polarization horizon
 probed ISM mostly close by (<200 pc), within the Local Bubble
- discovery of many filamentary structures and linear depolarization canals (thermal instabilities with anisotropic conduction; trails of stars,...)
- the filamentary structure also shows a signature is Planck dust polarization maps, a common underlying physical structure
- LOFAR an excellent i, nstrument to study ISM with an exquisite resolution in Faraday depth (1 rad/m²)

潘

THANK YOU !