Magnetic fields in the Galactic halo

Katia FERRIÈRE

Institut de Recherche en Astrophysique et Planétologie, Observatoire Midi-Pyrénées, Toulouse, France

Magnetic Fields in the Universe V From Laboratory and Stars to primordial Structures Cargèse – 5 - 9 October, 2015

Outline

- Observational overview
- The Milky Way
- External spiral galaxies
- Physical origin of X-shape magnetic fields
- Mathematical description of X-shape magnetic fields
- 4 X-shape magnetic field in the Galactic halo?
 - Our 4 halo field models
 - Our preferred (disk + halo) field model

(日)

Physical origin of X-shape magnetic fields Mathematical description of X-shape magnetic fields X-shape magnetic field in the Galactic halo?

Outline

The Milky Way External spiral galaxies

Observational overview

- The Milky Way
- External spiral galaxies
- Physical origin of X-shape magnetic fields
- 3 Mathematical description of X-shape magnetic fields
- 4 X-shape magnetic field in the Galactic halo?
 - Our 4 halo field models
 - Our preferred (disk + halo) field model

イロト イポト イヨト イヨ

Physical origin of X-shape magnetic fields Mathematical description of X-shape magnetic fields X-shape magnetic field in the Galactic halo? The Milky Way External spiral galaxies

Observational tools

• Linear polarization of starlight & dust thermal emission Due to *dust grains* \rightarrow general (dusty) ISM $\ll \vec{B}_{\perp}$ (orientation only)

• Zeeman splitting Molecular & atomic *spectral lines* \rightarrow neutral regions $\ll B_{\parallel}$ (strength & sign)

• Faraday rotation

Caused by thermal electrons \rightarrow ionized regions

 $\ll B_{\parallel}$ (strength & sign)

• Synchrotron polarized emission

Produced by *CR electrons* → general (CR-filled) ISM

 $\ll \vec{B}_{\perp}$ (strength & orientation)

・ロト ・四ト ・ヨト・ヨト・

Physical origin of X-shape magnetic fields Mathematical description of X-shape magnetic fields X-shape magnetic field in the Galactic halo?

Outline

The Milky Way External spiral galaxies

- Observational overview
- The Milky Way
- External spiral galaxies
- Physical origin of X-shape magnetic fields
- 3 Mathematical description of X-shape magnetic fields
- 4 X-shape magnetic field in the Galactic halo?
 - Our 4 halo field models
 - Our preferred (disk + halo) field model

イロト イポト イヨト イヨ

Physical origin of X-shape magnetic fields Mathematical description of X-shape magnetic fields X-shape magnetic field in the Galactic halo? The Milky Way External spiral galaxies

Faraday rotation of point sources

 $\Delta \theta = \mathbf{RM} \lambda^2$ where $\mathbf{RM} = C \int n_e \mathbf{B}_{\parallel} dl$

 \Rightarrow RM probes B_{\parallel} in ionized regions

Physical origin of X-shape magnetic fields Mathematical description of X-shape magnetic fields X-shape magnetic field in the Galactic halo? The Milky Way External spiral galaxies

Faraday rotation of point sources

- $\Delta \theta = \mathbf{RM} \ \lambda^2$ where $\mathbf{RM} = C \ \int n_{\rm e} \ \mathbf{B}_{\parallel} \ dl$
- \Rightarrow RM probes B_{\parallel} in ionized regions

RMs of pulsars & EGRSs with $|b| < 8^{\circ}$

RMs of EGRSs [NVSS ($\delta > -40^{\circ}$) + S-PASS ($\delta < 0^{\circ}$)]

Physical origin of X-shape magnetic fields Mathematical description of X-shape magnetic fields X-shape magnetic field in the Galactic halo? The Milky Way External spiral galaxies

Faraday rotation of point sources

In ionized regions

- - In disk : \vec{B}_{reg} is horizontal & mostly azimuthal \vec{B}_{reg} reverses direction with decreasing radius \vec{B}_{reg} is symmetric in z
 - In halo : $\vec{B}_{\rm reg}$ has horizontal & vertical components
 - \vec{B}_{reg} is CCW at z > 0 & CW at z < 0

 \rightarrow anti-symmetric in z

 $(B_{\rm reg})_z \simeq +0.3 \,\mu {\rm G}$ toward SGP & $\simeq 0 \,\mu {\rm G}$ (?) toward NGP

→ possibly consistent with sym disk & anti-sym halo

Physical origin of X-shape magnetic fields Mathematical description of X-shape magnetic fields X-shape magnetic field in the Galactic halo? The Milky Way External spiral galaxies

Diffuse synchrotron emission

$$\mathcal{E} = f(\alpha) n_{\text{rel}} \mathbf{B}_{\perp}^{\alpha+1} v^{-\alpha} \quad \& \quad \vec{\mathcal{E}} \perp \vec{\mathbf{B}}_{\perp}$$

 \Rightarrow - Total intensity probes B_{\perp} (strength only)

- Polarized intensity probes $(\vec{B}_{ord})_{\perp}$ (strength & orientation)

Astronomy Online

Katia FERRIÈRE Magnetic fields in the Galactic halo

・ロト ・四ト ・ヨト・ヨト・

Physical origin of X-shape magnetic fields Mathematical description of X-shape magnetic fields X-shape magnetic field in the Galactic halo? The Milky Way External spiral galaxies

Diffuse synchrotron emission

$$\mathcal{E} = f(\alpha) n_{\text{rel}} \mathbf{B}_{\perp}^{\alpha+1} v^{-\alpha} \quad \mathbf{\&} \quad \vec{\mathbf{\mathcal{E}}} \perp \vec{\mathbf{B}}_{\perp}$$

 \Rightarrow - Total intensity probes B_{\perp} (strength only)

- Polarized intensity probes $(\vec{B}_{ord})_{\perp}$ (strength & orientation)

Physical origin of X-shape magnetic fields Mathematical description of X-shape magnetic fields X-shape magnetic field in the Galactic halo? The Milky Way External spiral galaxies

Diffuse synchrotron emission

- $\mathcal{E} = f(\alpha) n_{\text{rel}} \mathbf{B}_{\perp}^{\alpha+1} v^{-\alpha} \quad \mathbf{\&} \quad \vec{\mathbf{\mathcal{E}}} \perp \vec{\mathbf{B}}_{\perp}$
- \Rightarrow Total intensity probes B_{\perp} (strength only)
 - Polarized intensity probes $(\vec{B}_{ord})_{\perp}$ (strength & orientation)

Physical origin of X-shape magnetic fields Mathematical description of X-shape magnetic fields X-shape magnetic field in the Galactic halo? The Milky Way External spiral galaxies

Diffuse synchrotron emission

In general (CR-filled) ISM

- \ll \vec{B} has ordered & fluctuating components
 - Near the Sun : $B_{\text{ord}} \sim 3 \,\mu\text{G}$ & $B_{\text{tot}} \sim 5 \,\mu\text{G}$
 - Global spatial distribution : $L_{\rm B} \sim 12 \text{ kpc}$ & $H_{\rm B} \sim 4.5 \text{ kpc}$
 - In disk : \vec{B}_{ord} is horizontal
 - In halo : \vec{B}_{ord} has horizontal & vertical components

ヘロト 人間 トイヨト イヨト

Physical origin of X-shape magnetic fields Mathematical description of X-shape magnetic fields X-shape magnetic field in the Galactic halo?

Outline

The Milky Way External spiral galaxies

- Observational overview
 The Milky Way
 - External spiral galaxies
- Physical origin of X-shape magnetic fields
- 3 Mathematical description of X-shape magnetic fields
- 4 X-shape magnetic field in the Galactic halo?
 - Our 4 halo field models
 - Our preferred (disk + halo) field model

イロト イポト イヨト イヨ

Physical origin of X-shape magnetic fields Mathematical description of X-shape magnetic fields X-shape magnetic field in the Galactic halo? The Milky Way External spiral galaxies

External spiral galaxies

In galactic disks

- $B_{\rm ord} \sim (1-5) \,\mu {\sf G} \,\, \& \,\, B_{\rm tot} \sim (5-20) \,\mu {\sf G}$
- \vec{B}_{ord} is horizontal has spiral structure
- In galactic halos
 - $B_{\rm tot} \lesssim 10 \,\mu{
 m G}$
 - \vec{B}_{ord} has horizontal & vertical components is X-shaped

ヘロト ヘ部ト ヘヨト ヘヨト

Physical origin of X-shape magnetic fields Mathematical description of X-shape magnetic fields X-shape magnetic field in the Galactic halo? The Milky Way External spiral galaxies

Face-on spiral galaxy: M51

Total intensity contours + apparent \vec{B} vectors at λ 6 cm (5.0 GHz) (100 m Effelsberg + VLA)

Optical image (HST)

Fletcher et al. (2009)

Physical origin of X-shape magnetic fields Mathematical description of X-shape magnetic fields X-shape magnetic field in the Galactic halo?

NGC 4217

The Milky Way External spiral galaxies

Total intensity contours + apparent \vec{B} vectors at λ 6.2 cm (4.86 GHz) (VLA)

Optical image (DSS)

イロト イヨト イヨト イヨト

Soida (2004)

Physical origin of X-shape magnetic fields Mathematical description of X-shape magnetic fields X-shape magnetic field in the Galactic halo?

NGC 891

The Milky Way External spiral galaxies

Total intensity contours + apparent \vec{B} vectors at λ 3.6 cm (8.35 GHz) (100 m Effelsberg)

Optical image (CFHT)

Krause (2009). © MPIfR Bonn & CFHT/Coelum

ヘロト ヘ部ト ヘヨト ヘヨト

Physical origin of X-shape magnetic fields Mathematical description of X-shape magnetic fields X-shape magnetic field in the Galactic halo?

NGC 5775

The Milky Way External spiral galaxies

Total intensity contours + apparent \vec{B} vectors at λ 3.5 cm (8.46 GHz) (VLA + 100 m Effelsberg)

Hα image (VLT) Tüllmann et al. (2000)

イロト イヨト イヨト イヨト

Soida et al. (2011)

Physical origin of X-shape magnetic fields Mathematical description of X-shape magnetic fields X-shape magnetic field in the Galactic halo?

NGC 4631

The Milky Way External spiral galaxies

ヘロト ヘ部ト ヘヨト ヘヨト

Mora & Krause (2013)

+ apparent \vec{B} vectors at λ 3.6 cm (8.35 GHz) (100 m Effelsberg)

Total intensity contours

Physical origin of X-shape magnetic fields Mathematical description of X-shape magnetic fields X-shape magnetic field in the Galactic halo?

NGC 4631

Total intensity contours at λ 3.6 cm (8.35 GHz) (100 m Effelsberg)

+ intrinsic \vec{B} vectors from λ 3.6 cm & λ 6.2 cm (VLA + 100 m Effelsberg) 12 42 30 12 40

イロト イヨト イヨト イヨト

Mora & Krause (2013)

External spiral galaxies

Outline

- Observational overview
 The Milky Way
 External spiral galaxies
- Physical origin of X-shape magnetic fields
- 3 Mathematical description of X-shape magnetic fields
- 4 X-shape magnetic field in the Galactic halo?
 - Our 4 halo field models
 - Our preferred (disk + halo) field model

イロト イポト イヨト イヨ

Possible scenarios

• Large-scale regular magnetic field

- ★ Conventional dynamo in the halo
- ★ Dynamo in the halo + large-scale wind from the disk or outflow from the central region
- ★ Dynamo in the disk + large-scale wind from the disk or outflow from the central region

- Small-scale anisotropic random magnetic field
 - ★ Spiky wind ☞ extremely elongated magnetic loops

Conventional dynamo in the halo

Dipole-like magnetic field sheared out in the azimuthal direction

Very different from an X-shape magnetic field

< ロト < 同ト < ヨト < ヨト

Halo dynamo + wind

• Oblique wind from the disk

• Champagne flow from the central region

Katia FERRIÈRE Magnetic fields in the Galactic halo

Disk dynamo + wind

• Oblique wind from the disk

- Inphysical, because all field lines converge to the rotation axis Mathematically, $B_r → ∞$
- Must prevent field lines from reaching the rotation axis

・ ロ ト ・ 日 ト ・ 日 ト ・

Disk dynamo + wind

• Oblique wind from the disk + bipolar jet from the galactic center

• Champagne flow from the central region

Vertical symmetry

- Halo dynamo + wind
 - $\ll \vec{B}$ is necessarily anti-symmetric in z

- Disk dynamo + wind
 - $\ll \vec{B}$ is more likely symmetric in z (but could also be anti-symmetric)

Outline

- External spiral galaxies
- Physical origin of X-shape magnetic fields
- Mathematical description of X-shape magnetic fields
 - 4 X-shape magnetic field in the Galactic halo?
 - Our 4 halo field models
 - Our preferred (disk + halo) field model

イロト イヨト イヨト イヨ

How to model X-shape magnetic fields ?

Input

Consider a magnetic configuration

defined by a network of field lines

- I shape of field lines
 - distribution of B_n on a reference surface

• Purpose

Derive an analytical expression for the associated $\vec{B}(r, \varphi, z)$

Method

Use the Euler potentials, α and β ,

defined such that $\vec{B} = \vec{\nabla} \alpha \times \vec{\nabla} \beta$

イロト イヨト イヨト イヨ

Euler potentials

• Definition

2 scalar functions, α and β , such that

$$\vec{B} = \vec{\nabla}\alpha \times \vec{\nabla}\beta$$

Advantages

- * \vec{B} is automatically *divergence-free* $\vec{\nabla} \cdot \vec{B} = 0$
- $\star \alpha$ and β are constant along field lines
 - $\vec{B} \perp \vec{\nabla} \alpha \perp$ surfaces of $c^{st} \alpha \implies \vec{B}$ tg surfaces of $c^{st} \alpha$
 - $\vec{B} \perp \vec{\nabla} \beta \perp$ surfaces of $c^{st} \beta \implies \vec{B}$ tg surfaces of $c^{st} \beta$
- ★ Direct measure of magnetic flux

$$\vec{B} \cdot d\vec{S} = d\alpha \, d\beta$$

How to use the Euler potentials ?

• Consider a network of field lines

- shape of field lines
 - distribution of B_n on a reference surface

• Find 2 independent functions, α and β , with - α and β constant along field lines - $d\alpha \ d\beta = B_n \ dS$ on the reference surface

• Derive $\vec{B}(r, \varphi, z)$ using $\vec{B} = \vec{\nabla} \alpha \times \vec{\nabla} \beta$

Poloidal, X-shape magnetic field

- Poloidal magnetic field
 - $arphi\,$ is c^{st} along field lines
 - \Rightarrow Take $\beta = \varphi$
- X-shape magnetic field

E.g.,
$$z = z_0 (1 + a r^2)$$

 $\Rightarrow z_0 = \frac{z}{1 + a r^2}$ is cst along field lines
 \Rightarrow Take $\alpha = fc(z_0)$

• Exponential decrease with z Take $\alpha = \alpha_0 \exp\left(-\frac{|z_0|}{H}\right)$

イロト イヨト イヨト イヨト

Spiral, X-shape magnetic field

- Spiral magnetic field
 - E.g., $\varphi = \varphi_0 + f_{\varphi}(r, z)$
 - $\Rightarrow \varphi_0 = \varphi f_{\varphi}(r, z)$ is cst along field lines
 - \Rightarrow Take $\beta = \varphi_0$
- X-shape magnetic field
 - E.g., $z = z_0 (1 + a r^2)$ $\Rightarrow z_0 = \frac{z}{1 + a r^2}$ is cst along field lines \Rightarrow Take $\alpha = fc(z_0)$
- Exponential decrease with z

Take $\alpha = \alpha_0 \exp\left(-\frac{|z_0|}{H}\right)$

ヘロト ヘ部ト ヘヨト ヘヨト

Outline

Dur 4 halo field models Dur preferred (disk + halo) field model

Observational overview The Milky Way

- External spiral galaxies
- Physical origin of X-shape magnetic fields
- 3 Mathematical description of X-shape magnetic fields

4 X-shape magnetic field in the Galactic halo?

- Our 4 halo field models
- Our preferred (disk + halo) field model

イロト イヨト イヨト イヨ

Outline

Our 4 halo field models Our preferred (disk + halo) field mode

Observational overview The Miller Wey

- The Milky Way
- External spiral galaxies
- Physical origin of X-shape magnetic fields
- 3 Mathematical description of X-shape magnetic fields

4 X-shape magnetic field in the Galactic halo?

- Our 4 halo field models
- Our preferred (disk + halo) field model

イロト イポト イヨト イヨ

Our 4 halo field models Our preferred (disk + halo) field model

Poloidal field lines

イロト イヨト イヨト イヨト

æ

Our 4 halo field models Our preferred (disk + halo) field model

Full, spiraling field lines

イロト イヨト イヨト イヨト

æ

Our 4 halo field models Our preferred (disk + halo) field model

Synchrotron polarization maps

イロト イヨト イヨト

Outline

Our 4 halo field models Our preferred (disk + halo) field model

Observational overview

- The Milky Way
- External spiral galaxies
- Physical origin of X-shape magnetic fields
- 3 Mathematical description of X-shape magnetic fields
- X-shape magnetic field in the Galactic halo?
 Our 4 halo field models
 - Our preferred (disk + halo) field model

イロト イポト イヨト イヨ

Our 4 halo field models Our preferred (disk + halo) field model

Representative field line

D1 (disk) + C0 (halo)

ヘロト ヘ部ト ヘヨト ヘヨト

Our 4 halo field models Our preferred (disk + halo) field model

All-sky map of Galactic Faraday depth

Observations

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト …

æ

Our 4 halo field models Our preferred (disk + halo) field model

Synchrotron polarization map

イロト イヨト イヨト イヨト