Studies of the ISM magnetic field from anisotropies in synthetic PPV cubes

Alejandro Esquivel (ICN-UNAM)

in collaboration with Alex Lazarian (UW-Madison) Dmitri Pogosyan (U of Alberta)

Magnetic Fields in the Universe V, Oct 2015

Anisotropic Turbulence

cascade

Power Spectrum

(Cho, Lazarian & Vishniac, 2002)

Grid of MHD models

- Ideal 3D MHD simulations of fully developed (driven) turbulence
- Isothermal, in a periodic Cartesian grid.
- The parameters that control the simulations are the sonic, and the Alfvén Mach numbers.

$$M_{\rm s} \equiv \frac{v_{\rm L}}{c_{\rm s}}; \quad M_{\rm A} = \frac{v_{\rm L}}{v_{\rm A}}$$

$$c_{\rm s} = \sqrt{\frac{P}{\rho}}; \quad v_{\rm A} = \frac{B}{\sqrt{4\pi\,\rho}}$$

- We take the output of the simulations to create synthetic PPV data cubes, and we measure the anisotropy in velocity channels with different resolutions.
- Similar set of simulations as in Burkhart et al. 2014.
- These results are (will be) in Esquivel, Lazarian & Pogosyan 2015.

Table 1. Parameters of the MHD simulations.

Model	$v_{\mathrm{A},0}$	$P_{\rm gas,0}$	$\mathcal{M}_{ m s}$	\mathcal{M}_{A}	Resolution
M1	0.1	0.025	~ 4.7	~ 7.4	512^{3}
M2	0.1	0.050	~ 3.4	~ 7.6	512^{3}
M3	0.1	0.100	~ 2.6	~ 8.2	512^{3}
M4	0.1	0.700	~ 0.9	~ 7.6	512^{3}
M5	0.1	1.000	~ 0.8	~ 7.8	512^{3}
M6	0.1	2.000	~ 0.5	~ 7.0	512^{3}
M7	1.0	0.0049	~ 10.8	~ 0.8	512^{3}
M8	1.0	0.0077	~ 8.6	~ 0.8	512^{3}
M9	1.0	0.010	~ 7.4	~ 0.7	512^{3}
M10	1.0	0.025	~ 4.8	~ 0.8	512^{3}
M11	1.0	0.050	~ 3.4	~ 0.8	512^{3}
M12	1.0	0.100	~ 2.7	~ 0.8	512^{3}
M13	1.0	0.700	~ 1.0	~ 0.8	512^{3}
M14	1.0	1.000	~ 0.7	~ 0.7	512^{3}
M15	1.0	2.000	~ 0.5	~ 0.7	512^{3}
M16	2.0	0.010	~ 9.5	~ 0.5	256^{3}
M17	2.0	0.100	~ 3.2	~ 0.5	256^{3}
M18	2.0	1.000	~ 1.1	~ 0.5	256^{3}
M19	3.0	0.010	~ 10.8	~ 0.4	256^{3}
M20	3.0	0.100	~ 3.4	~ 0.4	256^{3}
M21	3.0	1.000	~ 1.0	~ 0.3	256^{3}
M22	5.0	0.010	~ 9.4	~ 0.2	256^{3}
M23	5.0	0.100	~ 2.9	~ 0.2	256^{3}
M24	5.0	1.000	~ 0.8	~ 0.2	256^{3}

Example of one of the simulations

Model MI2 (with *Ms=2.7* and *M_A=0.8*)

Simulation PPP (x,y,z) space

Synthetic Observations PPV (x,y,v_z) space

Intensity $\propto \rho$

Density cuts

PPV data: the effect of varying resolution

- Emissivity in PPV data depends on density and velocity at the same time.
- Lazarian & Pogosyan (2000) study the effect of varying the thickness in velocity channels (velocity resolution) to obtain the velocity spectral index from observations.
 - As we lower the velocity resolution, the contribution of density becomes more prominent. In thinner velocity channels the velocity can dominate the spectrum.

Velocity slice $\delta v = \Delta v / 120$ Column density

Anisotropy in the structure function of velocity channels

• We take the Structure function in 2D in each i-th channel

$$SF_i(\mathbf{R}) = \langle [I(\mathbf{X}, v_{z,i}) - I(\mathbf{X} + \mathbf{R}, v_{z,i})]^2 \rangle,$$

• For isotropic (unmagnetized turbulence) the contours are circular, the anisotropy due to the magnetic field can be seen in the elongation in the direction of **B**. (Lazarian, Pogosyan & Esquivel, '02, Esquivel et al. '03, '05).

Magnetic Field orientation in one velocity channel

For each averaged structure functions, we measure

All models, averaging from 10 to L/5 cells

Summary/conclussions

- Structure functions in velocity channels, as in velocity centroids, and column density maps, are anisotropic.
- Such anisotropy points in the direction of the plane of the sky **B** field.
- The degree of anisotropy increases with the strength of B (i.e. $\sim 1/M_A$), for a given sonic Mach number (M_S).
 - Thus given an estimate of M_S one can infer an upper bound on the Alfvénic Mach number (we miss the information of the B_{LOS})
 - With help of other techniques/measurements (e.g. Zeeman splitting measurements) one could determine M_A .
 - These results are consistent with those previously obtained with velocity centroids (Esquivel & Lazarian 2011, Burkhart et al. 2014), but taking thin channels problems with fluctuations for high sonic Mach numbers in density is minimized.