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Anisotropic Turbulence
Magnetic Field Intensity

At large scales

Turbulence  becomes 
anisotropic down the 
cascade

injection scale(s)

dissipation scale
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(Cho, Lazarian & Vishniac, 2002)



• Ideal 3D MHD simulations of fully 
developed (driven) turbulence

• Isothermal, in a periodic Cartesian grid.
• The parameters that control the 

simulations are the sonic, and the 
Alfvén Mach numbers.

• We take the output of the simulations 
to create synthetic PPV data cubes, and 
we measure the anisotropy in velocity 
channels with different resolutions.

• Similar set of simulations as in Burkhart 
et al. 2014.

• These results are (will be) in Esquivel, 
Lazarian & Pogosyan 2015.

Grid of MHD models
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Table 1. Parameters of the MHD simulations.

Model vA,0 Pgas,0 Ms MA Resolution

M1 0.1 0.025 ⇠ 4.7 ⇠ 7.4 512

3

M2 0.1 0.050 ⇠ 3.4 ⇠ 7.6 512

3

M3 0.1 0.100 ⇠ 2.6 ⇠ 8.2 512

3

M4 0.1 0.700 ⇠ 0.9 ⇠ 7.6 512

3

M5 0.1 1.000 ⇠ 0.8 ⇠ 7.8 512

3

M6 0.1 2.000 ⇠ 0.5 ⇠ 7.0 512

3

M7 1.0 0.0049 ⇠ 10.8 ⇠ 0.8 512

3

M8 1.0 0.0077 ⇠ 8.6 ⇠ 0.8 512

3

M9 1.0 0.010 ⇠ 7.4 ⇠ 0.7 512

3

M10 1.0 0.025 ⇠ 4.8 ⇠ 0.8 512

3

M11 1.0 0.050 ⇠ 3.4 ⇠ 0.8 512

3

M12 1.0 0.100 ⇠ 2.7 ⇠ 0.8 512

3

M13 1.0 0.700 ⇠ 1.0 ⇠ 0.8 512

3

M14 1.0 1.000 ⇠ 0.7 ⇠ 0.7 512

3

M15 1.0 2.000 ⇠ 0.5 ⇠ 0.7 512

3

M16 2.0 0.010 ⇠ 9.5 ⇠ 0.5 256

3

M17 2.0 0.100 ⇠ 3.2 ⇠ 0.5 256

3

M18 2.0 1.000 ⇠ 1.1 ⇠ 0.5 256

3

M19 3.0 0.010 ⇠ 10.8 ⇠ 0.4 256

3

M20 3.0 0.100 ⇠ 3.4 ⇠ 0.4 256

3

M21 3.0 1.000 ⇠ 1.0 ⇠ 0.3 256

3

M22 5.0 0.010 ⇠ 9.4 ⇠ 0.2 256

3

M23 5.0 0.100 ⇠ 2.9 ⇠ 0.2 256

3

M24 5.0 1.000 ⇠ 0.8 ⇠ 0.2 256

3
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Example of one of the simulations

Model M12 (with Ms=2.7 and MA=0.8)
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• Emissivity in PPV data depends on density and velocity at the same time.

• Lazarian & Pogosyan (2000) study the effect of varying the thickness in velocity 
channels (velocity resolution) to obtain the velocity spectral index from 
observations.

• As we lower the velocity resolution, the contribution of density becomes more prominent. In thinner 
velocity channels the velocity can dominate the spectrum.

PPV data: the effect of varying resolution

Velocity slice               Column density          �v = �v/120



• We take the Structure function in 2D in each i-th channel

• For isotropic (unmagnetized turbulence) the contours are circular, the anisotropy due to the magnetic field 
can be seen in the elongation in the direction of B. (Lazarian, Pogosyan & Esquivel, ’02, Esquivel et al. ’03, ‘05). 

Anisotropy in the structure function of velocity channels

SFi(R) = h[I (X, vz,i)� I (X+R, vz,i)]
2i,



Magnetic Field orientation in one velocity channel

Ms=2.7 and MA=0.8
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For each averaged structure functions, we measure 

Thin channels:
solid lines
Thick channels
dashed lines

Isotropy degree

I.D. =
SF (Rk)

SF (R?)



All models, averaging from 10 to L/5 cells



• Structure functions in velocity channels, as in velocity centroids, and column density maps, 
are anisotropic.

• Such anisotropy points in the direction of the plane of the sky B field.

• The degree of anisotropy increases with the strength of B (i.e. ~1/MA), for a given sonic 
Mach number (MS).

• Thus given an estimate of MS one can infer an upper bound on the Alfvénic Mach 
number (we miss the information of the BLOS)

With help of other techniques/measurements (e.g. Zeeman splitting 
measurements) one could determine MA .

• These results are consistent with those previously obtained with velocity centroids 
(Esquivel & Lazarian 2011, Burkhart et al. 2014), but taking thin channels problems 
with fluctuations for high sonic Mach numbers in density is minimized.

Summary/conclussions


