Magnetic Fields in Galaxy Clusters: Cosmological MHD Simulations

Klaus Dolag (USM)

Galaxy Cluster

2.5 Mpc

2.5 Mpc

COMA (CHANDRA)

Computer Simulation

NGC4039 (I. Zuhaleva)

None Cool Core cluster, Cool Core cluster, AGN feedback main energy **Cosmological velocity field main energy** 630 kpc source for ICM source for ICM 10 arcmin **Central part of Galaxy Cluster** Wise et al. 2006 COMA (CHANDRA) HYDRA (Chandra) ck Hole Size of the Galaxy **Two classes of Galaxy Cluster!** 20 kpc (also feature differnt B/radio) **Faylor & Perley 19** Wise et al. 2006

Galaxies in Cosmological Context

Also galaxies generally come in various classes !

The many Lives of Galaxies

Gyr = 0.28 z = 15.304

Galaxies undergo a strong and violent evolution !

The many Lives of Galaxies

∆Kravtsov 2014

dson

Reves 2

Mandelbrot 2006

The efficiency of galaxies to convert gas into stars is strongly mass dependent !

Finally, lets try with Magnetic Fields

Cosmology (structure formation) Microphysics (plasma physics) magnetic seeding (star formtion)

Finally, lets try with Magnetic Fields

Seeds: Primordial Battery Shocks **Generators:** Stars Supernovae **Propagators: Galactic Winds** AGN, Jets **Moderators:** Dynamo Turbulence

+ Structure formation

Rees 1994

seed fields which are strongly resolution dependent, reaching µG levels in clusters.

0.5 Vazza et al. 2014 (ENZO)#R,

1.0

2.0

2.5

1.5

15 years of cluster MHD simulatios

15 years of cluster MHD simulatios

Simulatins predict magnetic field topology which matches observations quite well. But: a) produce too strong B fields in the centre b) too steep gradients outwards

Possible solution: Diffusion/Dissipation But: details unclear (plasma physics)

Linking things across all scales

SN 1006

Oxigen ejecta

Raynolds et al. 2011

Tracing stellar debris with metals

Simionescu et al. 2012

Linking things across all scales

A very simple example

Sub-resolution star-formation:

Multi phase model (sub-scale)

 $\mathrm{d}
ho_h$

dt

Springel & Hernquist 2002

Star formation

$$\frac{\mathrm{d}\rho_{\star}}{\mathrm{d}t} = (1-\beta)\frac{\rho_c}{t_{\star}}$$

supernova mass fraction

star formation timescale

Here, all you heared on this conference (should) go in.

cooling function

cloud evaporation parameter

Growth of clouds

Cloud evaporation

 $d\rho_c$ $\Lambda_{
m net}(
ho_h,u_h)$ $d\rho_h$ dt $\mathbf{d}t$ $u_h - u_c$

 $=A\beta \frac{\rho_c}{t_\star}$

A very simple model

A sub-resolution seeding model based on supernovae

- Supernova remnant: $r_{\rm SN} \approx 5 {\rm pc}$, $B_{\rm SN} \approx 10^{-4} {\rm G}$
- Bubble: $r_{\rm SB} \approx 25 {\rm pc}$
- Injection: $r_{inj} = h_i$ (e.g. numerical resolution)
- e_B : normalized dipole vector
- $\dot{N}_{\rm SN}\Delta t < 1 \Rightarrow$ stochastic approach
- Limit diffusion: $L_d = v_D \Delta t, v_D = \sqrt{0.5(c_s^2 + v_a^2)}$
- $\eta = 10^{27} \text{cm}^2 \text{s}^{-1}$

Beck et al. 2013

Exploring a galactic halo forming

Magnetic fields build up quiet early in proto-galactic halo

parameter choices of the SN seeding model !

-200 0 200 400 x (kac) comoving 1 -200 0 200 4 x (kac) comoving

0

Exploring a galactic halo forming

Evolution of intrinsic RM of the SN seeding model vs Observations !

Applying to a cosmological volume

density

z=5.34 magnetic field

Box3/hr (128 Mpc/h) of the Magneticum Pathfinder set.

Rotation Measure in Clusters (I)

Rotation Measure in Clusters (II)

Rotation Measure in Clusters (III)

Heat transport with Magnetic Fields

A small sample: final comparison

Conclusions

Magnetic Fields

Metals & Star-formation

SNR or PWN

Galaxies evolve in complex way, with close interplay between cosmic flows, star-formation and AGNs. Linking magetic fields to star-formation (SN seeding):

- a) Works on galactic scale => evolution of RM !
- **b)** Works on cluster scale, => RM-Lx relation !
- c) Voids stay free from magnetic fields (but Galactic winds, Cosmic Rays need to be modeled more explicitly) !
- d) Allows for magnetic field topology dependent transport !