

Polarised Dust Emission in the Magellanic Clouds

Annie Hughes, Jean-Philippe Bernard, Ludovic Montier, Dana Alina, Isabelle Ristorcelli, Ruka Misawa, Gabriel Foenard & the PILOT team

Dust Polarisation

- Grains are elongated and rotating
- Grains align partially on B

Oirap

- Cross section depends on grain size
- Trace B direction projected on the sky (like synchrotron)

Plane of the sk

 $P = \sqrt{(Q^2 + U^2)} \propto \cos^2 \phi$

The Magellanic Clouds

- Nearby: high resolution (~15pc) observations of dust, synchrotron and gas
- Low metallicity: LMC~1/2 and SMC ~1/6 solar, early Universe prototypes
- External vantage point: effect of galactic environment, known distance
- High galactic latitude: foreground contamination minimised

The Large Magellanic Cloud

- synchrotron & HI disk are more extended than SF region (esp. in south)
- HI & RC similar morphology, inc. "holes" rarely seen in external galaxies

353GHz Polarized Sky: LMC

LMC Total Intensity debiased

Oirap

debiased DX9 Planck data (15') no foreground subtraction

353GHz vs Visible: LMC

Oirap

Foreground Removal: p

- I_{FG} from correlation with MW HI just outside LMC
- p_{FG} of foreground from correlation of P and I with MW HI just outside LMC ($p_{FG} = 4.4\%$)

A. Hughes, Magnetic Fields in the Universe, Cargese, October 2015

Foreground Removal: ψ

- ψ_{FG} of foreground polarization from foreground stars interpolated over LMC
- $Q_{FG} = p_{FG} * I_{FG} * \cos(2^*\psi_{FG})$
- $U_{FG} = p_{FG} * I_{FG} * sin(2*\psi_{FG})$

Oirap

Foreground Subtracted: LMC

Total Intensity + B vectors

LMC intensity and B vectors .64⁰ 66⁰ ^{δ2000} (degræl) 70° 720 JPBlib V1.3 0 06^h00^m $05^{h}30^{m}$ 04^h30ⁿ α_{2000} (hr)

Polarised Intensity + B vectors

Dust v s Synchrotron: LMC

Polarisation Fraction: LMC

@irap

353GHz Polarized Sky: SMC

SMC Total Intensity debiased

debiased DX9 Planck data (15') no foreground subtraction

Foreground Subtracted: SMC

Total Intensity + B vectors

Polarised Intensity + B vectors

Polarisation Fraction: SMC

Polarisation Fraction

PILOT: Polarised Instrument to Observe the Tenuous ISM

Measures linear polarization of dust emission in the FIR/submm

 λ =240µm, angular resolution: 1.4', instantaneous FoV ~ 1° x 0.8°

Bolometer array with 2048 detectors

First flight on 20 September 2015 from Timmins. Two more flights foreseen (including southern hemisphere)

P \ L OT

Science Objectives

Key Science Objectives:

- the structure of the magnetic field from diffuse to dense ISM
- geometric and magnetic properties of dust grains
- understand polarized foreground
- complement Planck observations at λ<850 µm, with better accuracy and higher angular resolution

Observations: Galactic plane (|b|<20°), molecular clouds, nearby cold cores, external galaxies, diffuse ISM, deep fields

PALOT

Optics

PLOT Polarisation Measurement

PLOT Polarisation Measurement

Main Components

Detectors

- Bolometer arrays developed by CEA/LETI
- Same technology as used on Herschel PACS
- Multiplexed bolometer arrays with a total of 2048 detectors
- Detectors cooled down to 0.3 K through closed-cycle He3 fridge
- NEP ~ 2×10^{-16} W/Hz^{1/2}

PALOT

Estadius

The day-time stellar sensor (Estadius) provides 5" accuracy while scanning up to 1°/sec

First Flight

Actual Flight Plan

A balancing act between:

- science objectives
- calibration needs
- source visibility
- experiment constraints

P+L**O**T

Flight Plan: M31, Orion

Orion MC

PILOT Flight Plan: Diffuse ISM, DF

Deep Field

PLOT Timmins Flight Trajectory

Timmins Flight Trajectory

P \ L OT

Science Observations

Sources	Nb scènes	t obs	Map size	Deg^2/h scène	Deg^2 / h intégré	
Taurus	6	117 mn	12° x 8°	331	55	molocular
Orion	4	145.3 mn	10° x 10°	191	47.8	
Aquila Rift	2	46 mn	8° x 8°	188	94	ciouas
Cygnus OB7	2	21 mn	7° x 7°	333	166.5	
L1642	4	44 mn	2° x 2°	38	9.5	YSOs &
G93	6	61 mn	2° x 2°	38	6.3	cold cores
L183	4	41 mn	2° x 2°	38	9.5	
M31	8	84 mn	3° x 3°	49	6.1	6.
Polaris	10	160 mn	5° x 5 °	123	12.3	
Cosmo field	3.5	116 mn	16° x 16°	562	160	unuse isivi
Uranus	3	31 mn	3° x 2°	57	19	
Saturne	2	12 mn	2° x 2°	68	34	
SkyDip	2	10 mn				

P+LOT Timmins Flight: Summary

- Total flight time= 24 h Total time at ceiling= 18.4 h Ceiling altitude= 39 km (3 hpa) Scientific data= 14.8 h (80 % of ceiling) Detectors setting, Fridge recycling, slews = 3.6 h (20 %)
 - In-flight instrument performance:
- Focal plane at 320 mK (as expected)
- 6 out of 8 arrays operational (as expected)
- Detector noise at expected levels (a few 10⁻¹⁶ W/Hz^{1/2})
- Instrument PSF consistent with expectations
- Pointing accuracy (Estadius) nominal

Inflight Performance: PSF

preliminary PSF on Saturn on individual arrays

First Look: Orion

Australia 2017

- Fixing connectors to arrays 1 & 3
- Enlarging bandpass: potentially increase sensitivity by a factor of 3
- BICEP2, LMC & SMC, Galactic
 Plane, including Galactic Centre

Other Opportunities

NIKA2 on IRAM 30m

Polarisation at 1 & 2 mm KIDS detectors Resolution: 12", 23" FoV: 6.5 x 6.5 arcmin e.g. 8hr, M51, 36" at 2mm

NGC_5194 pol SNR NIKA 2mm extrap from 250um

 $13^{h}30^{m}45^{s}30^{s}15^{s}00^{s}29^{m}45^{s}30^{s}15^{s}00^{s}$ α_{2000} (hr)

ALMA Cycle 3:

2 pointings (arm+spur in NGC1566) 350 GHz continuum (B7) Scales: 1.4" to 5.7" (60 to 250pc) Time: 7.5 hrs (12m only)

