Magnetic fields and massive stellar feedback

M. I. R. Alves (IRAP, Toulouse) K. Ferrière, F. Boulanger & O. Berné

MFU V, Corsica, 5 – 9.10.2015

Milky Way's magnetic fingerprint (Credits: Planck Collaboration)

- ★ Evolution of massive star-forming regions and its impact on the magnetic field:
 - some examples: strength & orientation of the field
 - what happens to the magnetic field in photodissociation regions (PDRs)?
- An analytical solution of the magnetic field in an interstellar bubble (HII region + PDR + molecular cloud)
- ★ Under which conditions do we expect magnetic fields to dominate the dynamical evolution of PDRs?
- ★ The future: study the magnetic field in PDRs with SOFIA, IRAM 30m & ALMA

Massive stars are the main sources of turbulent energy injection in the interstellar medium (ISM):

- ★ Powerful stellar winds
- ★ Starlight momentum
- ★ HII regions
- ★ Supernovae

The surrounding ISM is swept up into a dense shell \rightarrow interstellar bubble

Cygnus X (HOBYS/Herschel – PACS/SPIRE, Motte et al. 2010)

Photodissociation regions (PDRs) are found at the edge of these interstellar bubbles: the interface between the HII region and the molecular clouds, illuminated by the FUV photons from the massive stars.

PDRs are usually modelled ignoring gas dynamics (Hollenbach & Tielens 1999): → Is the magnetic field important for the dynamical evolution of PDRs?

How is the magnetic field affected by massive stellar feedback?

Magnetic fields in PDRs: Sh2-29 HII region

Santos et al. (2014); ~15' x 15'

Pol : 10%

B lines are **pilled** up at the border of the HII region.

Davis-Chadrasekhar-Fermi method (Davis 1951, C&F 1953):

$$B \propto \frac{\Delta V \sqrt{\rho}}{\delta \theta} \approx 400 \mu G$$

 \rightarrow B ~ 80 times higher than in the diffuse ISM (~ 5 µG, Crutcher 2007)

 G_0 – intensity of the incident FUV field (in terms of the average ISRF)

Magnetic fields in PDRs: Omega Nebula M17

Direct measurements of *B* in PDRs via Zeeman effect observations (give $B_{line-of-sight}$ only): e.g. $B_{los,max} = 750 \mu G$ in PDR of M17 (Brogan & Troland 2001)

The Ophiuchi region as seen by *Planck*

Zeeman effect observations (Heiles 1988):

$$B_{los,max} = 9\mu G$$

→

 B_{pos} studies (near-IR and optical polarization of dust extinction): McCutcheon et al. (1986), Cashman & Clemens (2014)

$$G_0 = 30$$

$$n = 1 \times 10^3 cm^{-3}$$

$$B = 12 \mu G$$

$$P_{mag} / k = 4 \times 10^4 cm^{-3} K$$

$$B_{pos} \Leftrightarrow PDR = \bot$$

Magnetic fields in massive star-forming regions

How is the magnetic field affected by massive stellar feedback?

 \rightarrow Field lines are dragged with the gas (frozen-in condition)

gas; increase of B

Analytical model: the magnetized Strömgren shell

Planck intermediate results. XXXIV. (2015): The magnetic field structure in the Rosette Nebula

- Radial expansion of the gas:
 - uniform and spherical structure
 - using conservation of mass

$$r_{final} = f(r_{initial})$$

- Frozen-in condition:
 - start from a uniform B_0
 - field lines follow the gas $A(\mathbf{r}) = (\nabla \mathbf{r}_0) \cdot A_0(\mathbf{r}_0)$ (Parker 1970)

$$\vec{B}(\vec{r}) = \left(\frac{r_0}{r}\right)^2 B_{0r}\vec{e}_r + \frac{r_0}{r}\frac{dr_0}{dr}\left(B_{0\theta}\vec{e}_{\theta} + B_{0\phi}\vec{e}_{\phi}\right)$$

(Previous analytical and numerical studies: e.g. Ferrière et al. 1991, Krumholz et al. 2007, Arthur et al. 2011)

Planck intermediate results. XXXIV. (2015): The magnetic field structure in the Rosette Nebula

Under which conditions does the **magnetic field dominate in the PDR**? (ignoring turbulent pressure)

$$P_{th}^{HII} + P_{rad} = P_{th} + P_{mag} \Leftrightarrow n_e T_e + \frac{L}{4\pi d^2 c} = nT + \frac{B^2}{8\pi}$$

$$B = \frac{100}{\sqrt{2.9 \times 10^6}} (n_e T_e + 376G_0 - nT)^{1/2}$$
with $G_0 = \frac{L_{FUV}}{4\pi d^2}$,
 $T = 20K, T_e = 7000K$
and n_e given by the Strömgren
solution (density-size relation).
Simple diagnostic to test with
observations \Rightarrow relative
orientation between PDR and \vec{B}
 $T = 20R + B^2 + 376G_0 - nT)^{1/2}$

(G₀, n): Habart et al. (2011), Pilleri et al. (2012), Pellegrini et al. (2007, 2009)

Future observations

Looking for the signatures of magnetic field compression...

SOFIA (HAWC+)

2.1µm image

* Depending on the physical conditions (G_0 ,n):

 \rightarrow magnetic fields are dragged by the expansion of matter in massive star forming regions (by radiation pressure + ionized gas pressure)

 \rightarrow field lines are compressed in PDRs

 \rightarrow magnetic pressure increases and may become comparable to the gas pressure

Magnetic fields should be taken into account in the dynamical evolution of PDRs, as they may influence their structure.

Thank you

