

Observations of solar wind turbulence (from MHD to electron scales)

Olga Alexandrova olga.alexandrova@obspm.fr

LESIA, Observatoire de Paris

Plasma Turbulence in the Heliosphere

In situ measurements in the solar wind and planetary magnetospheres show omnipresence of plasma turbulence.

[Alexandrova et al. 2013, 2008, Von Papen et al. 2014]

1

Image: mail of the system o

- 1. Presence of a mean magnetic field B_0 leads to an anisotropy of turbulent fluctuations.
- 2. Plasma waves: Alfven, magnetosonic, mirror, wistlers, kinetic Alfven waves (KAW), etc... (wave turbulence).
- 3. No collisions : m.f.p. ~ 1 AU.
- 4. In plasmas there is a number of characteristic space and temporal scales.

$$f_{ci}, c/\omega_{pi}, R_{Li}$$
 $f_{ce}, c/\omega_{pe}, R_{Le}$ λ_D

Typical plasma scales in the solar wind

Inertial length λ_{i,e} (scale of the demagnetization of the particles, which is close to ρ_{i,e} in plasma with β=nkT/(B²/2µ₀)~1) and plasma frequency (ω_p) :

$$\lambda_{i,e} = \frac{c}{\omega_{pi,e}} ; \ \omega_{pi,e}^2 = \frac{4\pi n e^2}{m_{i,e}}$$

- Debye length $\lambda_D \sim 10m$ (sphere of influence of a given test charge in a plasma); at L> λ_D plasma is quasi-neutre : $\lambda_D^2 = \frac{k_B T}{8\pi n e^2}$
- Satellite size ~ 1-2 m.

Two components, Slow and Fast streams. Slow wind: V = 300-400 km/s, n=7 cm-3, Tp= 2.10^{5} K Fast wind: V = 600-800 km/s, n=3 cm-3, Tp= 5.10^{5} K

The solar wind

Turbulence dissipation may explain the solar wind heating [e.g. Vasquez et al. 2007; Sorriso-Valvo et al. 2007; Macbride et al. 2008; Smith et al. 2009; Cranmer et al. 2009; Marino et al. 2012; Wu et al. 2013, ...]

Solar wind Turbulence and Alfven waves

[Bruno & Carbone, 2013] [Gosling et al., 2009; Balcher & Davis 1977] FAST WIND trace of magnetic field spectral matrix 800 10 V_{pr} (km/s) 700 10 600 power density [nT²/Hz] 500 V_{pt} (km/s) -100 nT -200 100 10² V (km/s) U 10 (nT -100 10 -200 N_p (cm⁻³) 10 2 (nl 10 10-2 $1 \times 10^{-5} 1 \times 10^{-4} 10^{-3}$ 10-1 10-6 04:00 12:00 16:00 UT 12 May 2003 frequency [Hz]

- Strong correction between V and B fluctuations at 1 AU (Alfven waves)
- These waves belongs to f⁻¹ spectral range.
- Kolmogorov turbulence at smaller scales (MHD) is observed.

Starting point of the Kolmogorov spectrum

• The solar wind expansion time:

$$\tau_{exp} = R/V_{sw}$$

• The eddy-turnover time:

$$\tau_{NL} = \ell / \delta V_\ell$$

• Transition between f⁻¹ and f^{-5/3} spectrum corresponds to a scale where these 2 characteristic times are of the same order [Mangeney et al. 1991; Meyer-Vernet 2007]: $au_{exp} \simeq au_{NL}$

Solar wind Turbulence and Alfven waves

In a case of a pure alfvenic turbulence magnetic and velocity spectra should be the same, but in the solar wind it is not the case:

[Podesta et al., 2007; Salem 2000, PHD]

Why?

- Local dynamo process (Grappin et al., 1983)?
- Solar wind expansion ? V-B alignment (see talk of S. Boldyrev)?
- Compressibility ?

Solar wind turbulence is compressible

3.0 log(power density cm⁶ Hz⁻¹) 1.5 **f**-1.67 0.0 **f-**0.9 -1.5 -3.0[Celnikier et al. 1983, A&A] log(frequency Hz) -4.5 -3.00 -1.50 -2.25 -0.75 0.00 0.75

Spectrum of electron density fluctuations in the solar wind as measured by ISEE 1 & 2. See as well Chen et al. 2013.

Can the compressibility be the source of the non-alfvenisity of the inertial range in the solar wind turbulence?

B₀♠ V -Fourier Power _**●**_P_{||} 10⁴ - P $k_{\parallel} \gg$ κ 10^{3} Wicks et al. (2010) 10^{2}

Anisotropy of turbulent fluctuations at MHD scales

• Alfvénic turbulence of Goldreich and Sridhar, 1995 is based on the idea of a balance between linear Alfvén time (along B_0) and non-linear time (in plane perp. to B_0):

 $\tau_A =$

 $\sim \tau_{NL} =$

$$P(k_{\perp}) \sim k_{\perp}^{-5/3} ; P(k_{\parallel}) \sim k_{\parallel}^{-2}$$

10

Intermittency of turbulent fluctuations within the MHD inertial range

[Sorriso-Valvo et al. 1999, Dudok de Wit et al. 2013]

11

Solar wind turbulent spectrum of magnetic fluctuations at MHD-Ion-Electron scales

[Alexandrova, Chen, Sorriso-Valvo, Bale, Horbury, 2013 Space Science Rev, open access]

- 1. What is going on close to ion and electron scales?
- 2. Which plasma scale is responsible for the ion break?
- 3. Which plasma scale plays the role of the dissipation scale?
- 4. Physical mechanisms?
- 5. Nature of turbulent fluctuations : waves or strong turbulence? 12
- 6. ...

Turbulence at kinetic scales

1. Ion scales

$$f_{ci} = \frac{eB_0}{2\pi m_i c}, \ k\rho_i \sim 1, \ kc/\omega_{pi} \sim 1$$

Which ion scale is responsible for the break?

Time scale $f_{ci} = \Omega_{ci}/2\pi$; $\Omega_{ci} = eB/m_ic$

Spatial scales

$$\rho_i = \frac{V_{\perp i}}{\Omega_{ci}} ; \ \lambda_i = \frac{c}{\omega_{pi}} = \frac{V_A}{\Omega_{ci}}$$

In frequency spectrum, these scales appear at Doppler shifted frequencies:

$$f_{
ho_i} \simeq rac{V_{solar \ wind}}{
ho_i} \ ; \ f_{\lambda_i} \simeq rac{V_{solar \ wind}}{\lambda_i}$$

 All characteristic time and spatial ion scales are observed close to the spectral break point...

- How can we distinguish between different scales?
- Important in order to understand which physical mechanisms "break the spectrum" (e.g., if it is f_{ci} => damping of Alfven waves).

Which ion scale is responsible for the break?

- Leamon et al. 2000 : λ_i
- Schekochihin et al. 2009: ρ_i
- Perri et al. 2010 : any of the scale/ combination of scales
- Bourouaine et al. 2012: λ_i
- Bruno et al. 2014: resonant k of parallel Alfven waves
- Chen et al. 2014: beta dependent.

$$\beta_i = 2\mu_0 nk_B T_i / B^2 = \rho_i^2 / \lambda_i^2.$$

⇒ The largest characteristic ion scale "breaks" turbulent spectrum [Chen et al. 2014].

All scales correlates well with f_b...

 \Rightarrow No ONE scale (ONE physical phenomena) to explain the ion transition ? $_{16}$

Ion scales: superposition of different phenomena

17

Solar wind spectrum around ion scales (conclusions based on a case of a fast sw stream)

It consists of

- Alfven Ion Cyclotron waves (with $k_{||}$)
- Coherent structures (with k_{perp})

- Non coherent signal, which can be described by

$$E_B \sim f^{-3/2} \exp(-f/f_0), \ f_0 = 0.3 \text{Hz}$$

 \Rightarrow The total observed spectrum depends on the contribution (percentage) of each event.

 \Rightarrow These results may explain spectral variability around ion scales.

[S. Lion, O. Alexandrova, A. Zaslavsky, 2015, submitted to APJ]

Turbulence at kinetic scales

2. Electron scales

Cluster mission : the most sensitive instrumentation (magnetic spectrum up to 400 Hz, i.e. scales ~300m).

Turbulent spectrum at electron scales: dissipation range?!

- In HD turbulence, dissipation range can be described by [Chen et al., 1993, PRL] :

$$E(k) = Ak^{-\alpha} \exp(-k/k_d)$$

- In solar wind turbulence, we find a similar law :

$$E(k) = Ak^{-8/3} \exp(-k\rho_e)$$

General spectrum at electron scales

[Alexandrova et al., 2012, APJ]

 $E(k) = Ak^{-8/3} \exp(-k\rho_e)$

Electron Larmor radius ρ_{e} plays the role of the dissipation scale in collisionless solar wind turbulence.

Examples of different (non-universal) spectra at electron scales

Observation of spectral break of bosse at electron scales:

These non-universal features are due to appearence of quasimonochromatic whistler waves in parallel propagation (with $k||B_0$).

Examples of quasi-monochromatic whistler waves in the solar wind (5-10% of data)

Whistlers appear for high electron heat flux

Electron heat flux, Q_e , is a measure of the asymmetry of the electron distribution function $f(v_e)$. In the solar wind it is present for $f(v_{e||})$. We find that whistlers grow with Q_e (generation mechanism: whistler heat flux instability, see Gary et al.,99).

Turbulence nature: weak (or wave) vs strong

Strong turbulence: mixture of NL structures (vortices, current sheets, ect...)

Zooms around ion and electron scales:

Strong turbulence within k^{-5/3} and k^{-8/3} ranges + waves at ion and electron scales.

Turbulence nature: weak (or wave) vs strong

Courtesy of Lorenzo Matteini: 2D Hybrid numerical simulations showing development of strong turbulence (vortices) with superposed waves at ion scales.

Discussion and Conclusion

- Solar wind is one of the best laboratories of space plasma turbulence.
- In-situ observations: from MHD (10⁷ km) to sub-electron scales (300 m).
- At very large scales: spectrum is ~f⁻¹, Alfvenic fluctuaitons;
- MHD inertial range is dominated by k_{perp} fluctuations, with Kolmogorov's power law;
- One decade around ion scales: superposition of turbulence and waves/ion instabilities ;
- Between ion and e-scales: small-scale inertial range ~k_{perp}-8/3;
- One decade around e-scales: dissipation at $\sim \rho_e$ + sometimes whistler waves with k_{||}.

Open questions

- Nature of Kolmogorov like turbulence ? Role of compressibility ?
- Physical processes at ion scales ?
- Final dissipation at electron scales ?
- Plasma heating and particle acceleration by turbulence ?
- Dissipation without collisions ?
- ...

Bonus

How do we measure turbulent spectra? Satellites in-situ measurements are time series => Fourier (or Wavelet) transform => frequency spectra

Methods for Characterising Microphysical Processes in Plasmas

- example of Cluster/FGM (5 vectors/sec measuremets)

> How do we get kspectra?

Taylor hypothesis:

$$\ell = V_{sw}\tau = V_{sw}/f$$

 $k = 2\pi/\ell = 2\pi f/V_{sw}$

30

Taylor hypothesis

$$\omega_{obs} = \omega_0 + \mathbf{k} \cdot \mathbf{V}$$

Supposing that $\omega_0 \ll k.V$, (V $\phi \ll V$) :

$$\omega_{obs} = \mathbf{k} \cdot \mathbf{V} = kV \cos(\Theta_{kV})$$

We don't know the angle between k and V => assumption of k || V:

$$\omega_{obs} = kV \to k = 2\pi f/V$$

Anisotropy of turbulent fluctuations at MHD scales

• Alfvénic turbulence of Goldreich and Sridhar, 1995 is based on the idea of a balance between linear Alfvén time (along B_0) and non-linear time (in plane perp. to B_0):

$$\tau_A = \frac{\ell_{\parallel}}{V_A} \sim \tau_{NL} = \frac{\ell_{\perp}}{\delta V_{\perp}}$$

$$P(k_{\perp}) \sim k_{\perp}^{-5/3} ; P(k_{\parallel}) \sim k_{\parallel}^{-2}$$